diff --git a/src/finn/custom_op/fpgadataflow/__init__.py b/src/finn/custom_op/fpgadataflow/__init__.py index 80f8649fc2f203ce3bf6bc45d728827b9b413ee6..e0cf22bcb7cd98843cb2ab254e9c74027aed533f 100644 --- a/src/finn/custom_op/fpgadataflow/__init__.py +++ b/src/finn/custom_op/fpgadataflow/__init__.py @@ -41,12 +41,14 @@ class HLSCustomOp(CustomOp): self.code_gen_dir = util.get_by_name(onnx_node.attribute, "code_gen_dir") self.executable_path = "" - def code_generation(self, context): + def code_generation(self, model): node = self.onnx_node - if "weights" in context: - self.generate_weights(context) - if "thresh" in context: - self.generate_thresholds(context) + if node.op_type == "StreamingFCLayer_Batch": + self.generate_weights(model) + try: + self.generate_thresholds(model) + except: + pass self.global_includes() self.defines() self.read_npy_data() diff --git a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py index d8d67713700505a0078f08c7542beb13d98930da..0487b9a2bfb6716156b4ba37ffcbc4c042523c4f 100644 --- a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py @@ -148,9 +148,9 @@ class StreamingFCLayer_Batch(HLSCustomOp): assert ret.shape[2] == n_thres_steps return ret - def generate_weights(self, context): + def generate_weights(self, model): - weights = context["weights"] + weights = model.get_initializer(self.onnx_node.input[1]) # convert weights into hlslib-compatible format weight_tensor = self.get_hls_compatible_weight_tensor(weights) export_wdt = self.get_weight_datatype() @@ -184,8 +184,8 @@ class StreamingFCLayer_Batch(HLSCustomOp): f_weights.write(weight_hls_code) f_weights.close() - def generate_thresholds(self, context): - thresholds = context["thresh"] + def generate_thresholds(self, model): + thresholds = model.get_initializer(self.onnx_node.input[2]) threshold_tensor = self.get_hls_compatible_threshold_tensor(thresholds) tdt = DataType.INT32 # use UINT32 threshold export for bipolar times bipolar diff --git a/src/finn/transformation/fpgadataflow/__init__.py b/src/finn/transformation/fpgadataflow/__init__.py new file mode 100644 index 0000000000000000000000000000000000000000..e69de29bb2d1d6434b8b29ae775ad8c2e48c5391 diff --git a/src/finn/transformation/code_gen_transformation.py b/src/finn/transformation/fpgadataflow/code_gen_transformation.py similarity index 86% rename from src/finn/transformation/code_gen_transformation.py rename to src/finn/transformation/fpgadataflow/code_gen_transformation.py index 6b0ab56ee826b6e2b296a7520ba725317c99c3ca..d6fce3ddedc3ca044bd4702e91cb5007f04650ff 100644 --- a/src/finn/transformation/code_gen_transformation.py +++ b/src/finn/transformation/fpgadataflow/code_gen_transformation.py @@ -5,7 +5,7 @@ import finn.custom_op.registry as registry from finn.transformation import Transformation -def code_gen_transformation(node, context, model): +def code_gen_transformation(node, model): """Call custom implementation to generate code for single custom node and create folder that contains all the generated files""" op_type = node.op_type @@ -21,7 +21,7 @@ def code_gen_transformation(node, context, model): if not code_gen_dir: tmp_dir = tmp.mkdtemp(prefix="code_gen_" + str(node.op_type) + "_") inst.tmp_dir = tmp_dir - inst.code_generation(context) + inst.code_generation(model) # check if directory exists if os.path.isdir(tmp_dir): if len(os.listdir(tmp_dir)) == 0: @@ -40,7 +40,7 @@ def code_gen_transformation(node, context, model): os.rmdir(code_gen_dir) tmp_dir = tmp.mkdtemp(prefix="code_gen_" + str(node.op_type) + "_") inst.tmp_dir = tmp_dir - inst.code_generation(context) + inst.code_generation(model) if os.path.isdir(tmp_dir): if len(os.listdir(tmp_dir)) == 0: raise Exception("Code was not generated!") @@ -63,11 +63,6 @@ class CodeGen(Transformation): """Code generation for all nodes in model""" def apply(self, model): - W = model.get_initializer("weights") - T = model.get_initializer("thresh") - context = {} - context["weights"] = W - context["thresh"] = T for node in model.graph.node: - code_gen_transformation(node, context, model) + code_gen_transformation(node, model) return (model, False) diff --git a/src/finn/transformation/compilation_transformation.py b/src/finn/transformation/fpgadataflow/compilation_transformation.py similarity index 100% rename from src/finn/transformation/compilation_transformation.py rename to src/finn/transformation/fpgadataflow/compilation_transformation.py diff --git a/tests/transformation/test_code_gen_trafo.py b/tests/transformation/test_code_gen_trafo.py index 01768a36c8322b39ad1cde286fde008ab2b7c6d9..b5205c5211007c18a564b7a4c20e37de207b0708 100644 --- a/tests/transformation/test_code_gen_trafo.py +++ b/tests/transformation/test_code_gen_trafo.py @@ -6,21 +6,18 @@ from onnx import TensorProto, helper import finn.core.utils as util from finn.core.datatype import DataType from finn.core.modelwrapper import ModelWrapper -from finn.transformation.code_gen_transformation import CodeGen +from finn.transformation.fpgadataflow.code_gen_transformation import CodeGen def test_code_gen_trafo(): idt = wdt = odt = DataType.BIPOLAR - tdt = DataType.UINT32 mw = 8 mh = 8 pe = 4 simd = 4 wmem = mw * mh // (pe * simd) - assert mw * mh == wmem * pe * simd nf = mh // pe sf = mw // simd - tmem = nf inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, sf, simd]) outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, nf, pe]) @@ -39,7 +36,7 @@ def test_code_gen_trafo(): SIMD=simd, PE=pe, WMEM=wmem, - TMEM=tmem, + TMEM=0, inputDataType=idt.name, weightDataType=wdt.name, outputDataType=odt.name, @@ -54,11 +51,8 @@ def test_code_gen_trafo(): model.set_tensor_datatype("inp", idt) model.set_tensor_datatype("outp", odt) model.set_tensor_datatype("weights", wdt) - W = util.gen_finn_dt_tensor(wdt, (mh, mw)) + W = util.gen_finn_dt_tensor(wdt, (mw, mh)) model.set_initializer("weights", W) - model.set_tensor_datatype("thresh", tdt) - T = np.zeros((1, 1)) - model.set_initializer("thresh", T) model = model.transform(CodeGen()) for node in model.graph.node: diff --git a/tests/transformation/test_compilation_trafo.py b/tests/transformation/test_compilation_trafo.py index 563c4d4cca4ea1e5b13fc5723ca1f36c948c4007..9578d93d6d5bea2869e99ba442f0048a933d41c7 100644 --- a/tests/transformation/test_compilation_trafo.py +++ b/tests/transformation/test_compilation_trafo.py @@ -6,19 +6,17 @@ from onnx import TensorProto, helper import finn.core.utils as util from finn.core.datatype import DataType from finn.core.modelwrapper import ModelWrapper -from finn.transformation.code_gen_transformation import CodeGen -from finn.transformation.compilation_transformation import Compilation +from finn.transformation.fpgadataflow.code_gen_transformation import CodeGen +from finn.transformation.fpgadataflow.compilation_transformation import Compilation def test_compilation_trafo(): idt = wdt = odt = DataType.BIPOLAR - tdt = DataType.UINT32 mw = 8 mh = 8 pe = 4 simd = 4 wmem = mw * mh // (pe * simd) - assert mw * mh == wmem * pe * simd nf = mh // pe sf = mw // simd tmem = nf @@ -40,7 +38,7 @@ def test_compilation_trafo(): SIMD=simd, PE=pe, WMEM=wmem, - TMEM=tmem, + TMEM=0, inputDataType=idt.name, weightDataType=wdt.name, outputDataType=odt.name, @@ -55,11 +53,8 @@ def test_compilation_trafo(): model.set_tensor_datatype("inp", idt) model.set_tensor_datatype("outp", odt) model.set_tensor_datatype("weights", wdt) - W = util.gen_finn_dt_tensor(wdt, (mh, mw)) + W = util.gen_finn_dt_tensor(wdt, (mw, mh)) model.set_initializer("weights", W) - model.set_tensor_datatype("thresh", tdt) - T = np.zeros((1, 1)) - model.set_initializer("thresh", T) model = model.transform(CodeGen()) model = model.transform(Compilation())