diff --git a/.github/workflows/quicktest-dev-pr.yml b/.github/workflows/quicktest-dev-pr.yml
new file mode 100644
index 0000000000000000000000000000000000000000..cd59a629405c748187cdf478c0bdb0694c58c79f
--- /dev/null
+++ b/.github/workflows/quicktest-dev-pr.yml
@@ -0,0 +1,21 @@
+name: QuicktestPRAgainstDev
+
+on:
+  pull_request:
+    branches: [ dev ]
+  push:
+    branches: [ dev ]
+  
+
+jobs:
+
+  test:
+    name: Run quicktest on PR branch
+    runs-on: ubuntu-latest
+
+    steps:
+      - name: checkout
+        uses: actions/checkout@v2
+
+      - name: DockerRunQuicktest
+        run: sh run-docker.sh quicktest
diff --git a/AUTHORS.rst b/AUTHORS.rst
index e231e61d38991e11e2e43a7c9a3a78c50c878244..eb1e06e54b7eb6deedd3e7f8392bb3aa257e7dc6 100644
--- a/AUTHORS.rst
+++ b/AUTHORS.rst
@@ -6,3 +6,5 @@ Contributors
 * Jakoba Petri-Koenig (@auphelia)
 * Andrea Rigoni (@AndreaRigoni)
 * Hendrik Borras (@HenniOVP)
+* Lucian Petrica (@quetric)
+* Tobias Alonso (@Tobi-Alonso)
diff --git a/run-docker.sh b/run-docker.sh
index e1f17e728204217ff3caa6e486b2daae16d6d271..186efc322a8f437be0371b5a142a9dd524d1abf3 100755
--- a/run-docker.sh
+++ b/run-docker.sh
@@ -96,6 +96,8 @@ gecho "Port-forwarding for Netron $NETRON_PORT:$NETRON_PORT"
 gecho "Vivado IP cache dir is at $VIVADO_IP_CACHE"
 gecho "Using default PYNQ board $PYNQ_BOARD"
 
+DOCKER_INTERACTIVE = ""
+
 if [ "$1" = "test" ]; then
         gecho "Running test suite (all tests)"
         DOCKER_CMD="python setup.py test"
@@ -108,6 +110,7 @@ elif [ "$1" = "notebook" ]; then
 else
         gecho "Running container only"
         DOCKER_CMD="bash"
+        DOCKER_INTERACTIVE="-it"
 fi
 
 # Build the FINN Docker image
@@ -123,7 +126,7 @@ docker build -f docker/Dockerfile.finn_dev --tag=$DOCKER_TAG \
 # Launch container with current directory mounted
 # important to pass the --init flag here for correct Vivado operation, see:
 # https://stackoverflow.com/questions/55733058/vivado-synthesis-hangs-in-docker-container-spawned-by-jenkins
-docker run -t --rm --name $DOCKER_INST_NAME -it --init \
+docker run -t --rm --name $DOCKER_INST_NAME $DOCKER_INTERACTIVE --init \
 --hostname $DOCKER_INST_NAME \
 -e "XILINX_VIVADO=$VIVADO_PATH" \
 -e "SHELL=/bin/bash" \
diff --git a/src/finn/core/data_layout.py b/src/finn/core/data_layout.py
new file mode 100644
index 0000000000000000000000000000000000000000..3971d221527d3862346c06cf415831c27e5cba8b
--- /dev/null
+++ b/src/finn/core/data_layout.py
@@ -0,0 +1,35 @@
+# Copyright (c) 2020, Xilinx
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright notice, this
+#   list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright notice,
+#   this list of conditions and the following disclaimer in the documentation
+#   and/or other materials provided with the distribution.
+#
+# * Neither the name of FINN nor the names of its
+#   contributors may be used to endorse or promote products derived from
+#   this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+# predefined lists of strings to have a cannonical way of expresing data layout
+# annotations
+
+NHWC = ["N", "H", "W", "C"]
+NCHW = ["N", "C", "H", "W"]
+NC = ["N", "C"]
+UNKNOWN = []
diff --git a/src/finn/core/modelwrapper.py b/src/finn/core/modelwrapper.py
index dc5b36920a5639933463d682dc66fb8bc15b35f2..ed32426abcc8ea71428a7f746a99454e8e4a2c17 100644
--- a/src/finn/core/modelwrapper.py
+++ b/src/finn/core/modelwrapper.py
@@ -137,11 +137,16 @@ class ModelWrapper:
         qnt_annotations = graph.quantization_annotation
         ret = util.get_by_name(qnt_annotations, tensor_name, "tensor_name")
         if ret is not None:
-            ret = util.get_by_name(
+            ret_dt = util.get_by_name(
                 ret.quant_parameter_tensor_names, "finn_datatype", "key"
             )
-            if ret is not None:
-                ret.value = datatype.name
+            if ret_dt is not None:
+                ret_dt.value = datatype.name
+            else:
+                dt = onnx.StringStringEntryProto()
+                dt.key = "finn_datatype"
+                dt.value = datatype.name
+                ret.quant_parameter_tensor_names.append(dt)
         else:
             qa = onnx.TensorAnnotation()
             dt = onnx.StringStringEntryProto()
@@ -328,6 +333,22 @@ class ModelWrapper:
         else:
             return None
 
+    def is_fork_node(self, node):
+        """Checks if the given node is a fork, that is, the node has multiple
+        direct successors"""
+        direct_successors = self.find_direct_successors(node)
+        is_fork = False if direct_successors is None else (len(direct_successors) > 1)
+        return is_fork
+
+    def is_join_node(self, node):
+        """Checks if the given node is a join, that is, the node has multiple
+        direct predecessors"""
+        direct_predecessors = self.find_direct_predecessors(node)
+        is_join = (
+            False if direct_predecessors is None else (len(direct_predecessors) > 1)
+        )
+        return is_join
+
     def get_all_tensor_names(self):
         """Returns a list of all (input, output and value_info) tensor names
         in the graph."""
@@ -434,3 +455,58 @@ class ModelWrapper:
                 n_ind += 1
         except ValueError:
             return None
+
+    def get_tensor_layout(self, tensor_name):
+        """Returns the data layout annotation of tensor with given name.
+        The data layout is expressed as a list of strings with as many
+        elements as the number of dimensions in the tensor shape. Each
+        string annotates what is contained in that dimension. If there is no
+        data layout annotation, None will be returned.
+        Examples of data layout annotations:
+        ["N", "C"] is tensor[batch][channel]
+        ["N", "C", "H", "W"] is tensor[batch][channel][height][width]
+        ["N", "H", "W", "C"] is tensor[batch][height][width][channel]
+        """
+        graph = self._model_proto.graph
+        qnt_annotations = graph.quantization_annotation
+        ret = util.get_by_name(qnt_annotations, tensor_name, "tensor_name")
+        if ret is not None:
+            ret = util.get_by_name(
+                ret.quant_parameter_tensor_names, "tensor_layout", "key"
+            )
+            if ret is not None:
+                return eval(ret.value)
+        return None
+
+    def set_tensor_layout(self, tensor_name, data_layout):
+        """Sets the data layout annotation of tensor with given name. See
+        get_tensor_layout for examples."""
+        tensor_shape = self.get_tensor_shape(tensor_name)
+        assert type(data_layout) == list, "data_layout must be a list"
+        if tensor_shape is not None:
+            assert len(tensor_shape) == len(
+                data_layout
+            ), """Mismatch between number
+            of dimensions of tensor shape and data layout annotation."""
+        graph = self._model_proto.graph
+        qnt_annotations = graph.quantization_annotation
+        ret = util.get_by_name(qnt_annotations, tensor_name, "tensor_name")
+        if ret is not None:
+            ret_tl = util.get_by_name(
+                ret.quant_parameter_tensor_names, "tensor_layout", "key"
+            )
+            if ret_tl is not None:
+                ret_tl.value = str(data_layout)
+            else:
+                tl = onnx.StringStringEntryProto()
+                tl.key = "tensor_layout"
+                tl.value = str(data_layout)
+                ret.quant_parameter_tensor_names.append(tl)
+        else:
+            qa = onnx.TensorAnnotation()
+            dt = onnx.StringStringEntryProto()
+            dt.key = "tensor_layout"
+            dt.value = str(data_layout)
+            qa.tensor_name = tensor_name
+            qa.quant_parameter_tensor_names.append(dt)
+            qnt_annotations.append(qa)
diff --git a/src/finn/custom_op/fpgadataflow/__init__.py b/src/finn/custom_op/fpgadataflow/__init__.py
index a99d62fd18a958d37fef6b3e1939ef97e859b0b2..17a55e519ed0440f68e295aecaab179e6adf632f 100644
--- a/src/finn/custom_op/fpgadataflow/__init__.py
+++ b/src/finn/custom_op/fpgadataflow/__init__.py
@@ -40,6 +40,7 @@ from finn.util.basic import (
 from finn.util.fpgadataflow import (
     IPGenBuilder,
     pyverilate_get_liveness_threshold_cycles,
+    rtlsim_multi_io,
 )
 from . import templates
 
@@ -109,6 +110,31 @@ class HLSCustomOp(CustomOp):
         )
         return verilog_file
 
+    def get_all_verilog_paths(self):
+        "Return list of all folders containing Verilog code for this node."
+
+        code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen")
+        assert (
+            code_gen_dir != ""
+        ), """Node attribute "code_gen_dir_ipgen" is
+        not set. Please run HLSSynthIP first."""
+        verilog_path = "{}/project_{}/sol1/impl/verilog/".format(
+            code_gen_dir, self.onnx_node.name
+        )
+        # default impl only returns the HLS verilog codegen dir
+        return [verilog_path]
+
+    def get_all_verilog_filenames(self):
+        "Return list of all Verilog files used for this node."
+
+        verilog_files = []
+        verilog_paths = self.get_all_verilog_paths()
+        for verilog_path in verilog_paths:
+            for f in os.listdir(verilog_path):
+                if f.endswith(".v"):
+                    verilog_files += [f]
+        return verilog_files
+
     def prepare_rtlsim(self):
         """Creates a Verilator emulation library for the RTL code generated
         for this node, sets the rtlsim_so attribute to its path and returns
@@ -116,24 +142,15 @@ class HLSCustomOp(CustomOp):
 
         if PyVerilator is None:
             raise ImportError("Installation of PyVerilator is required.")
-        # ensure that code is generated
-        code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen")
-        assert (
-            code_gen_dir != ""
-        ), """Node attribute "code_gen_dir_ipgen" is
-        not set. Please run HLSSynthIP first."""
-        verilog_file = self.get_verilog_top_filename()
-        assert os.path.isfile(verilog_file), "Cannot find top-level Verilog file."
+        verilog_paths = self.get_all_verilog_paths()
+        verilog_files = self.get_all_verilog_filenames()
         # build the Verilator emu library
         sim = PyVerilator.build(
-            verilog_file,
+            verilog_files,
             build_dir=make_build_dir("pyverilator_" + self.onnx_node.name + "_"),
-            verilog_path=[
-                "{}/project_{}/sol1/impl/verilog/".format(
-                    code_gen_dir, self.onnx_node.name
-                )
-            ],
+            verilog_path=verilog_paths,
             trace_depth=get_rtlsim_trace_depth(),
+            top_module_name=self.get_verilog_top_module_name(),
         )
         # save generated lib filename in attribute
         self.set_nodeattr("rtlsim_so", sim.lib._name)
@@ -302,14 +319,24 @@ Found no codegen dir for this node, did you run the prepare_cppsim transformatio
             )
 
     def npy_to_dynamic_output(self, context):
-        """Reads the output from a .npy file and saves it at the right place in
-        the context dictionary."""
-        # TODO support multi-output nodes as needed
+        """Reads the output from an output.npy file generated from cppsim and
+        places its content into the context dictionary."""
         node = self.onnx_node
         code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
         output = np.load("{}/output.npy".format(code_gen_dir))
         context[node.output[0]] = output
 
+    def npy_to_dynamic_outputs(self, context, npy_list):
+        """Reads the output from .npy files generated from cppsim and places
+        their content into the context dictionary.
+        npy_list is a list specifying which files to read, and its order must
+        match the order of node outputs."""
+        node = self.onnx_node
+        code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
+        for i in range(len(npy_list)):
+            output = np.load("{}/{}".format(code_gen_dir, npy_list[i]))
+            context[node.output[i]] = output
+
     def exec_precompiled_singlenode_model(self):
         """Executes precompiled executable."""
         executable_path = self.get_nodeattr("executable_path")
@@ -405,6 +432,16 @@ compilation transformations?
             sim.stop_vcd_trace()
         return outputs
 
+    def rtlsim_multi_io(self, sim, io_dict):
+        "Run rtlsim for this node, supports multiple i/o streams."
+
+        trace_file = self.get_nodeattr("rtlsim_trace")
+        if trace_file == "default":
+            trace_file = self.onnx_node.name + ".vcd"
+        num_out_values = self.get_number_output_values()
+        total_cycle_count = rtlsim_multi_io(sim, io_dict, num_out_values, trace_file)
+        self.set_nodeattr("sim_cycles", total_cycle_count)
+
     def execute_node(self, context, graph):
         """Executes single node using cppsim or rtlsim."""
         mode = self.get_nodeattr("exec_mode")
diff --git a/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py b/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py
new file mode 100644
index 0000000000000000000000000000000000000000..54051af5e0387081a23e1f8fa77ec9e363098830
--- /dev/null
+++ b/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py
@@ -0,0 +1,361 @@
+# Copyright (c) 2020, Xilinx
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright notice, this
+#   list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright notice,
+#   this list of conditions and the following disclaimer in the documentation
+#   and/or other materials provided with the distribution.
+#
+# * Neither the name of FINN nor the names of its
+#   contributors may be used to endorse or promote products derived from
+#   this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+import os
+
+import numpy as np
+
+from finn.core.datatype import DataType
+from finn.custom_op.fpgadataflow import HLSCustomOp
+from onnx import TensorProto, helper
+from finn.util.data_packing import npy_to_rtlsim_input, rtlsim_output_to_npy
+
+
+class DuplicateStreams_Batch(HLSCustomOp):
+    """Class that corresponds to finn-hlslib function of the same name."""
+
+    def __init__(self, onnx_node):
+        super().__init__(onnx_node)
+
+    def get_nodeattr_types(self):
+        my_attrs = {
+            "NumChannels": ("i", True, 0),
+            "PE": ("i", True, 0),
+            # FINN DataTypes for input
+            "inputDataType": ("s", True, ""),
+            # number of input vectors, examples:
+            # [1] is a single vector (like a FC layer with batch=1)
+            # [4] is four vectors (like a FC layer with batch=4)
+            # [1, 4, 4] is four * four vectors (like a conv layer with batch=1)
+            "numInputVectors": ("ints", False, [1]),
+        }
+        my_attrs.update(super().get_nodeattr_types())
+        return my_attrs
+
+    def get_normal_input_shape(self):
+        ch = self.get_nodeattr("NumChannels")
+        vecs = list(self.get_nodeattr("numInputVectors"))
+        ishape = tuple(vecs + [ch])
+        return ishape
+
+    def get_folded_input_shape(self):
+        ch = self.get_nodeattr("NumChannels")
+        pe = self.get_nodeattr("PE")
+        vecs = list(self.get_nodeattr("numInputVectors"))
+        assert ch % pe == 0, "PE must divide NumChannels"
+        folds = int(ch / pe)
+        folded_ishape = tuple(vecs + [folds, pe])
+        return folded_ishape
+
+    def get_normal_output_shape(self):
+        return self.get_normal_input_shape()
+
+    def get_folded_output_shape(self):
+        return self.get_folded_input_shape()
+
+    def make_shape_compatible_op(self, model):
+        exp_ishape = self.get_normal_input_shape()
+        oshape = self.get_normal_output_shape()
+        ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
+        assert ishape == exp_ishape, "Unexpected input shape."
+        # implement tensor with correct shape
+        values = np.random.randn(*oshape).astype(np.float32)
+        split_input = np.concatenate((values, values), axis=0)
+        return helper.make_node(
+            "Split",
+            inputs=[split_input],
+            outputs=[self.onnx_node.output[0], self.onnx_node.output[0]],
+            value=helper.make_tensor(
+                name="const_tensor", data_type=TensorProto.FLOAT, axis=0
+            ),
+        )
+
+    def infer_node_datatype(self, model):
+        odt = self.get_output_datatype()
+        model.set_tensor_datatype(self.onnx_node.output[0], odt)
+
+    def verify_node(self):
+        info_messages = []
+        # verify that "domain" is set to "finn"
+        domain_value = self.onnx_node.domain
+        if domain_value == "finn":
+            info_messages.append("Attribute domain is set correctly")
+        else:
+            info_messages.append('Attribute domain should be set to "finn"')
+
+        # verify that "backend" is set to "fpgadataflow"
+        backend_value = self.get_nodeattr("backend")
+        if backend_value == "fpgadataflow":
+            info_messages.append("Attribute backend is set correctly")
+        else:
+            info_messages.append('Attribute backend should be set to "fpgadataflow"')
+
+        # verify that all necessary attributes exist
+        try:
+            self.get_nodeattr("code_gen_dir_cppsim")
+            self.get_nodeattr("executable_path")
+            self.get_nodeattr("NumChannels")
+            self.get_nodeattr("PE")
+            self.get_nodeattr("inputDataType")
+            info_messages.append("All necessary attributes exist")
+        except Exception:
+            info_messages.append(
+                """The required GlobalAccPool_Batch attributes do not exist."""
+            )
+
+        return info_messages
+
+    def get_input_datatype(self):
+        """Returns FINN DataType of input."""
+        return DataType[self.get_nodeattr("inputDataType")]
+
+    def get_output_datatype(self):
+        """Returns FINN DataType of output."""
+        return DataType[self.get_nodeattr("inputDataType")]
+
+    def get_instream_width(self):
+        """Returns input stream width."""
+        ibits = self.get_input_datatype().bitwidth()
+        pe = self.get_nodeattr("PE")
+        in_width = pe * ibits
+        return in_width
+
+    def get_outstream_width(self):
+        """Returns output stream width."""
+        obits = self.get_output_datatype().bitwidth()
+        pe = self.get_nodeattr("PE")
+        out_width = pe * obits
+        return out_width
+
+    def get_number_output_values(self):
+        return 2 * np.prod(self.get_folded_output_shape()[1:-1])
+
+    def execute_node(self, context, graph):
+        mode = self.get_nodeattr("exec_mode")
+        node = self.onnx_node
+        exp_ishape = self.get_normal_input_shape()
+        exp_oshape = self.get_normal_output_shape()
+        folded_ishape = self.get_folded_input_shape()
+        folded_oshape = self.get_folded_output_shape()
+
+        if mode == "cppsim":
+            code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
+        elif mode == "rtlsim":
+            code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen")
+        else:
+            raise Exception(
+                """Invalid value for attribute exec_mode! Is currently set to: {}
+            has to be set to one of the following value ("cppsim", "rtlsim")""".format(
+                    mode
+                )
+            )
+
+        inp = context[node.input[0]]
+        assert str(inp.dtype) == "float32", "Input datatype is not float32"
+        assert inp.shape == exp_ishape, """Input shape doesn't match expected shape ."""
+        export_idt = self.get_input_datatype()
+        # reshape input into folded form
+        inp = inp.reshape(folded_ishape)
+        # make copy before saving array
+        reshaped_input = inp.copy()
+        np.save(os.path.join(code_gen_dir, "input_0.npy"), reshaped_input)
+
+        if mode == "cppsim":
+            # execute the precompiled model
+            super().exec_precompiled_singlenode_model()
+            # load output npy file
+            super().npy_to_dynamic_outputs(context, ["output0.npy", "output1.npy"])
+            assert (
+                context[node.output[0]].shape == folded_oshape
+            ), "cppsim \
+            did not produce expected ofolded utput shape"
+            assert (
+                context[node.output[1]].shape == folded_oshape
+            ), "cppsim \
+            did not produce expected ofolded utput shape"
+            context[node.output[0]] = context[node.output[0]].reshape(*exp_oshape)
+            context[node.output[1]] = context[node.output[1]].reshape(*exp_oshape)
+        elif mode == "rtlsim":
+            sim = self.get_rtlsim()
+            nbits = self.get_instream_width()
+            rtlsim_inp = npy_to_rtlsim_input(
+                "{}/input_0.npy".format(code_gen_dir), export_idt, nbits
+            )
+            super().reset_rtlsim(sim)
+            super().toggle_clk(sim)
+            rtlsim_dict = {
+                "inputs": {"in0": rtlsim_inp},
+                "outputs": {"out0": [], "out1": []},
+            }
+            self.rtlsim_multi_io(sim, rtlsim_dict)
+            odt = self.get_output_datatype()
+            target_bits = odt.bitwidth()
+            packed_bits = self.get_outstream_width()
+            out_shape = self.get_folded_output_shape()
+
+            out_npy_path = "{}/output0.npy".format(code_gen_dir)
+            rtlsim_output_to_npy(
+                rtlsim_dict["outputs"]["out0"],
+                out_npy_path,
+                odt,
+                out_shape,
+                packed_bits,
+                target_bits,
+            )
+            # load and reshape output 0
+            output = np.load(out_npy_path)
+            output = np.asarray([output], dtype=np.float32).reshape(*exp_oshape)
+            context[node.output[0]] = output
+
+            out_npy_path = "{}/output1.npy".format(code_gen_dir)
+            rtlsim_output_to_npy(
+                rtlsim_dict["outputs"]["out1"],
+                out_npy_path,
+                odt,
+                out_shape,
+                packed_bits,
+                target_bits,
+            )
+            # load and reshape output 1
+            output = np.load(out_npy_path)
+            output = np.asarray([output], dtype=np.float32).reshape(*exp_oshape)
+            context[node.output[1]] = output
+        else:
+            raise Exception(
+                """Invalid value for attribute exec_mode! Is currently set to: {}
+            has to be set to one of the following value ("cppsim", "rtlsim")""".format(
+                    mode
+                )
+            )
+
+        assert (
+            context[node.output[0]].shape == exp_oshape
+        ), """Output0 shape doesn't match expected shape."""
+        assert (
+            context[node.output[1]].shape == exp_oshape
+        ), """Output1 shape doesn't match expected shape."""
+
+    def global_includes(self):
+        self.code_gen_dict["$GLOBALS$"] = ['#include "streamtools.h"']
+
+    def defines(self, var):
+        self.code_gen_dict["$DEFINES$"] = []
+
+    def read_npy_data(self):
+        code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
+        dtype = self.get_input_datatype()
+        elem_bits = dtype.bitwidth()
+        packed_bits = self.get_instream_width()
+        packed_hls_type = "ap_uint<%d>" % packed_bits
+        elem_hls_type = dtype.get_hls_datatype_str()
+        npy_type = "float"
+        npy_in = "%s/input_0.npy" % code_gen_dir
+        self.code_gen_dict["$READNPYDATA$"] = []
+        self.code_gen_dict["$READNPYDATA$"].append(
+            'npy2apintstream<%s, %s, %d, %s>("%s", in0);'
+            % (packed_hls_type, elem_hls_type, elem_bits, npy_type, npy_in)
+        )
+
+    def strm_decl(self):
+        self.code_gen_dict["$STREAMDECLARATIONS$"] = []
+        self.code_gen_dict["$STREAMDECLARATIONS$"].append(
+            'hls::stream<ap_uint<{}>> in0 ("in0");'.format(self.get_instream_width())
+        )
+        self.code_gen_dict["$STREAMDECLARATIONS$"].append(
+            'hls::stream<ap_uint<{}>> out0 ("out0");'.format(self.get_outstream_width())
+        )
+        self.code_gen_dict["$STREAMDECLARATIONS$"].append(
+            'hls::stream<ap_uint<{}>> out1 ("out1");'.format(self.get_outstream_width())
+        )
+
+    def docompute(self):
+        self.code_gen_dict["$DOCOMPUTE$"] = [
+            """DuplicateStreams_Batch<{}, {}> (in0, out0, out1, 1);""".format(
+                self.get_outstream_width(), self.get_number_output_values() // 2,
+            )
+        ]
+
+    def dataoutstrm(self):
+        code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
+        dtype = self.get_output_datatype()
+        elem_bits = dtype.bitwidth()
+        packed_bits = self.get_outstream_width()
+        packed_hls_type = "ap_uint<%d>" % packed_bits
+        elem_hls_type = dtype.get_hls_datatype_str()
+        npy_type = "float"
+        npy_out = "%s/output0.npy" % code_gen_dir
+        npy_out1 = "%s/output1.npy" % code_gen_dir
+        oshape = self.get_folded_output_shape()
+        oshape_cpp_str = str(oshape).replace("(", "{").replace(")", "}")
+
+        self.code_gen_dict["$DATAOUTSTREAM$"] = [
+            'apintstream2npy<%s, %s, %d, %s>(out0, %s, "%s");'
+            % (
+                packed_hls_type,
+                elem_hls_type,
+                elem_bits,
+                npy_type,
+                oshape_cpp_str,
+                npy_out,
+            )
+        ]
+
+        self.code_gen_dict["$DATAOUTSTREAM$"] += [
+            'apintstream2npy<%s, %s, %d, %s>(out1, %s, "%s");'
+            % (
+                packed_hls_type,
+                elem_hls_type,
+                elem_bits,
+                npy_type,
+                oshape_cpp_str,
+                npy_out1,
+            )
+        ]
+
+    def save_as_npy(self):
+        self.code_gen_dict["$SAVEASCNPY$"] = []
+
+    def blackboxfunction(self):
+        self.code_gen_dict["$BLACKBOXFUNCTION$"] = [
+            """void {}(hls::stream<ap_uint<{}>> &in0,
+                hls::stream<ap_uint<{}>> &out0,
+                hls::stream<ap_uint<{}>> &out1)""".format(
+                self.onnx_node.name,
+                self.get_instream_width(),
+                self.get_outstream_width(),
+                self.get_outstream_width(),
+            )
+        ]
+
+    def pragmas(self):
+        self.code_gen_dict["$PRAGMAS$"] = ["#pragma HLS INTERFACE axis port=in0"]
+        self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out0")
+        self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out1")
+        self.code_gen_dict["$PRAGMAS$"].append(
+            "#pragma HLS INTERFACE ap_ctrl_none port=return"
+        )
diff --git a/src/finn/custom_op/fpgadataflow/thresholding_batch.py b/src/finn/custom_op/fpgadataflow/thresholding_batch.py
new file mode 100644
index 0000000000000000000000000000000000000000..fa33c70218fab16f106da45e296f0d59ae4ea606
--- /dev/null
+++ b/src/finn/custom_op/fpgadataflow/thresholding_batch.py
@@ -0,0 +1,551 @@
+# Copyright (c) 2020, Xilinx
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright notice, this
+#   list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright notice,
+#   this list of conditions and the following disclaimer in the documentation
+#   and/or other materials provided with the distribution.
+#
+# * Neither the name of FINN nor the names of its
+#   contributors may be used to endorse or promote products derived from
+#   this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+from math import ceil
+import os
+
+import numpy as np
+
+from onnx import TensorProto, helper
+from finn.core.datatype import DataType
+from finn.custom_op.fpgadataflow import HLSCustomOp
+from finn.util.basic import interleave_matrix_outer_dim_from_partitions
+from finn.util.data_packing import (
+    npy_to_rtlsim_input,
+    numpy_to_hls_code,
+    rtlsim_output_to_npy,
+)
+from . import templates
+
+# ONNX i/o tensor shape assumptions for Thresholding:
+# input 0 is the input tensor, shape (..., NumChannels)
+# input 1 is the threshold tensor, shape (NumChannels, n_thres)
+# output 0 is the output tensor, shape (..., NumChannels) - same as input
+# the ... here can be any shape (representing groups of vectors)
+
+
+class Thresholding_Batch(HLSCustomOp):
+    """Class that corresponds to finn-hls Thresholding_Batch function."""
+
+    def __init__(self, onnx_node):
+        super().__init__(onnx_node)
+        self.decoupled_wrapper = templates.decoupled_wrapper
+
+    def get_nodeattr_types(self):
+        my_attrs = {
+            "PE": ("i", True, 0),
+            "NumChannels": ("i", True, 0),
+            # string defining memory type
+            "ram_style": ("s", False, "distributed"),
+            # FINN DataTypes for inputs, weights, outputs
+            "inputDataType": ("s", True, ""),
+            "outputDataType": ("s", True, ""),
+            # input and output FIFO depths
+            "inFIFODepth": ("i", False, 0),
+            "outFIFODepth": ("i", False, 0),
+            # number of input vectors, examples:
+            # [1] is a single vector (like a FC layer with batch=1)
+            # [4] is four vectors (like a FC layer with batch=4)
+            # [1, 4, 4] is four * four vectors (like a conv layer with batch=1)
+            "numInputVectors": ("ints", False, [1]),
+        }
+        my_attrs.update(super().get_nodeattr_types())
+        return my_attrs
+
+    def calc_tmem(self):
+        """Calculates and returns TMEM."""
+        mh = self.get_nodeattr("NumChannels")
+        pe = self.get_nodeattr("PE")
+        return mh // pe
+
+    def make_shape_compatible_op(self, model):
+        oshape = self.get_normal_output_shape()
+        # implement tensor with correct shape
+        values = np.random.randn(*oshape).astype(np.float32)
+        return helper.make_node(
+            "Constant",
+            inputs=[],
+            outputs=[self.onnx_node.output[0]],
+            value=helper.make_tensor(
+                name="const_tensor",
+                data_type=TensorProto.FLOAT,
+                dims=values.shape,
+                vals=values.flatten().astype(float),
+            ),
+        )
+
+    def infer_node_datatype(self, model):
+        node = self.onnx_node
+        # check input datatype against property
+        idt_name = self.get_input_datatype().name
+        exp_idt_name = self.get_nodeattr("inputDataType")
+        assert exp_idt_name == idt_name, "Bad input DataType for Thresholding layer"
+        # set output datatype from property
+        odt = self.get_output_datatype()
+        model.set_tensor_datatype(node.output[0], odt)
+
+    def verify_node(self):
+        info_messages = []
+        # verify that "domain" is set to "finn"
+        domain_value = self.onnx_node.domain
+        if domain_value == "finn":
+            info_messages.append("Attribute domain is set correctly")
+        else:
+            info_messages.append('Attribute domain should be set to "finn"')
+
+        # verify that "backend" is set to "fpgadataflow"
+        backend_value = self.get_nodeattr("backend")
+        if backend_value == "fpgadataflow":
+            info_messages.append("Attribute backend is set correctly")
+        else:
+            info_messages.append('Attribute backend should be set to "fpgadataflow"')
+
+        # verify that all necessary attributes exist
+        # TODO collect automatically from get_nodeattr_types
+        try:
+            self.get_nodeattr("code_gen_dir_cppsim")
+            self.get_nodeattr("executable_path")
+            self.get_nodeattr("NumChannels")
+            self.get_nodeattr("PE")
+            self.get_nodeattr("inputDataType")
+            self.get_nodeattr("outputDataType")
+            info_messages.append("All necessary attributes exist")
+        except Exception:
+            info_messages.append(
+                """The required Threshold_Batch attributes do not exist."""
+            )
+
+        return info_messages
+
+    def bram_estimation(self):
+        """Calculates BRAM cost if resource set to BRAM"""
+        style = self.get_nodeattr("ram_style")
+        P = self.get_nodeattr("PE")
+        idt = self.get_input_datatype()
+        A = idt.bitwidth()
+        tmem = self.calc_tmem()
+
+        if style == "block" and tmem > 1:
+            return int(ceil(A * P / 16)) * int(ceil(tmem / 1024))
+        else:
+            return 0
+
+    def lut_estimation(self):
+        """Calculates LUT cost, taking memory resource type into account """
+        # TODO add in/out FIFO contributions
+        style = self.get_nodeattr("ram_style")
+        P = self.get_nodeattr("PE")
+        idt = self.get_input_datatype()
+        A = idt.bitwidth()
+        tmem = self.calc_tmem()
+        # cost of comparators
+        comparator_cost = A * P
+        # cost of LUTRAM
+        if style == "distributed" and tmem > 1:
+            lutram_cost = P * A * int(ceil(tmem / 64))
+        else:
+            lutram_cost = 0
+        # total cost
+        return comparator_cost + lutram_cost
+
+    def get_input_datatype(self):
+        """Returns FINN DataType of input."""
+        return DataType[self.get_nodeattr("inputDataType")]
+
+    def get_output_datatype(self):
+        """Returns FINN DataType of output."""
+        return DataType[self.get_nodeattr("outputDataType")]
+
+    def get_instream_width(self):
+        i_bits = self.get_input_datatype().bitwidth()
+        return i_bits * self.get_nodeattr("PE")
+
+    def get_outstream_width(self):
+        o_bits = self.get_output_datatype().bitwidth()
+        return o_bits * self.get_nodeattr("PE")
+
+    def get_folded_input_shape(self):
+        ich = self.get_nodeattr("NumChannels")
+        pe = self.get_nodeattr("PE")
+        fold = ich // pe
+        vecs = list(self.get_nodeattr("numInputVectors"))
+        folded_input_shape = tuple(vecs + [fold, pe])
+        return folded_input_shape
+
+    def get_folded_output_shape(self):
+        # same shape as input
+        return self.get_folded_input_shape()
+
+    def get_normal_input_shape(self):
+        ich = self.get_nodeattr("NumChannels")
+        vecs = list(self.get_nodeattr("numInputVectors"))
+        normal_input_shape = tuple(vecs + [ich])
+        return normal_input_shape
+
+    def get_normal_output_shape(self):
+        # same shape as input
+        return self.get_normal_input_shape()
+
+    def get_number_output_values(self):
+        nf = np.prod(self.get_folded_output_shape()[:-1])
+        return nf
+
+    def get_template_param_values(self):
+        """Returns the template parameter values according to input, output and weight
+        data types."""
+        ret = dict()
+        inp_hls_str = self.get_input_datatype().get_hls_datatype_str()
+        out_hls_str = self.get_output_datatype().get_hls_datatype_str()
+        # fill in TSrcI
+        ret["TSrcI"] = "Slice<%s>" % inp_hls_str
+        # fill in TDstI
+        ret["TDstI"] = "Slice<%s>" % out_hls_str
+
+        return ret
+
+    def get_hls_compatible_threshold_tensor(self, orig_thres_matrix):
+        """Convert the original numpy weight matrix orig_weight_matrix into
+        a form suitable for passing to the hlslib call:
+        * ensure MH % PE == 0
+        * for unsigned inputs, ensure thresholds are positive
+        * interleave rows between PEs
+        * reshape into (PE, TMEM, n_thres_steps) and return
+        """
+        mh = self.get_nodeattr("NumChannels")
+        pe = self.get_nodeattr("PE")
+        tmem = mh // pe
+        assert mh % pe == 0, "Requirement NumChannels divisable by PE is violated."
+        assert (
+            orig_thres_matrix.ndim == 2
+        ), """Threshold matrix dimension is
+        not as expected (2)."""
+        n_thres_steps = orig_thres_matrix.shape[1]
+        if not self.get_input_datatype().signed():
+            # ensure all thresholds are nonnegative
+            assert (orig_thres_matrix >= 0).all()
+        # ensure all thresholds are integer
+        assert (orig_thres_matrix.astype(np.int32) == orig_thres_matrix).all()
+        ret = orig_thres_matrix
+        # ensure channels = mh , duplicating if necessary
+        if ret.shape[0] == 1:
+            ret = np.tile(ret, (mh, 1))
+        assert (
+            ret.shape[0] == mh
+        ), "Channels of threshold matrix are not as expected (mh)"
+        # distribute rows between PEs
+        ret = interleave_matrix_outer_dim_from_partitions(ret, pe)
+        assert (
+            ret.shape[0] == pe
+        ), """First dimension after distribution of the
+        rows between PEs is not as expected (pe)"""
+        assert (
+            ret.shape[1] == tmem
+        ), """Second dimension after distribution of the
+        rows between PEs is not as expected (tmem)"""
+        assert (
+            ret.shape[2] == n_thres_steps
+        ), """Third dimension after distribution of the
+        rows between PEs is not as expected (n_thres_steps)"""
+        return ret.reshape(1, pe, tmem, n_thres_steps)
+
+    def generate_params(self, model, path):
+        code_gen_dir = path
+        # save thresholds in thresh.h
+        thresholds = model.get_initializer(self.onnx_node.input[1])
+
+        threshold_tensor = self.get_hls_compatible_threshold_tensor(thresholds)
+        tdt = DataType.INT32
+        thresholds_hls_code = numpy_to_hls_code(
+            threshold_tensor, tdt, "thresholds", False, True
+        )
+        # write thresholds into thresh.h
+        f_thresh = open("{}/thresh.h".format(code_gen_dir), "w")
+        tdt_hls = tdt.get_hls_datatype_str()
+        # use binary to export bipolar activations
+        export_odt = self.get_output_datatype()
+        if self.get_output_datatype() == DataType.BIPOLAR:
+            export_odt = DataType.BINARY
+        odt_hls = export_odt.get_hls_datatype_str()
+        f_thresh.write(
+            "static ThresholdsActivation<{},{},{},{},{},{},{}> threshs \
+            = ".format(
+                self.calc_tmem(),
+                self.get_nodeattr("PE"),
+                threshold_tensor.shape[-1],
+                tdt_hls,
+                odt_hls,
+                export_odt.min(),
+                "std::less_equal<%s>" % tdt_hls,
+            )
+        )
+        f_thresh.write(thresholds_hls_code)
+        f_thresh.close()
+
+    def execute_node(self, context, graph):
+        mode = self.get_nodeattr("exec_mode")
+        node = self.onnx_node
+
+        # TODO ensure codegen dir exists
+        if mode == "cppsim":
+            code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
+        elif mode == "rtlsim":
+            code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen")
+        else:
+            raise Exception(
+                """Invalid value for attribute exec_mode! Is currently set to: {}
+            has to be set to one of the following value ("cppsim", "rtlsim")""".format(
+                    mode
+                )
+            )
+
+        # create a npy file fore each input of the node (in_ind is input index)
+        in_ind = 0
+        for inputs in node.input:
+            # it is assumed that the first input of the node is the data input
+            # the second input are the weights
+            # the third input are the thresholds
+            if in_ind == 0:
+                assert (
+                    str(context[inputs].dtype) == "float32"
+                ), """Input datatype is
+                not float32 as expected."""
+                expected_inp_shape = self.get_folded_input_shape()
+                reshaped_input = context[inputs].reshape(expected_inp_shape)
+                if self.get_input_datatype() == DataType.BIPOLAR:
+                    # store bipolar activations as binary
+                    reshaped_input = (reshaped_input + 1) / 2
+                    export_idt = DataType.BINARY
+                else:
+                    export_idt = self.get_input_datatype()
+                # make copy before saving the array
+                reshaped_input = reshaped_input.copy()
+                np.save(
+                    os.path.join(code_gen_dir, "input_{}.npy".format(in_ind)),
+                    reshaped_input,
+                )
+            elif in_ind > 2:
+                raise Exception("Unexpected input found for StreamingFCLayer")
+            in_ind += 1
+
+        if mode == "cppsim":
+            # execute the precompiled model
+            super().exec_precompiled_singlenode_model()
+            # load output npy file
+            super().npy_to_dynamic_output(context)
+            # reinterpret binary output as bipolar where needed
+            if self.get_output_datatype() == DataType.BIPOLAR:
+                out = context[node.output[0]]
+                out = 2 * out - 1
+                context[node.output[0]] = out
+            assert (
+                context[node.output[0]].shape == self.get_folded_output_shape()
+            ), """Output shape is not as expected"""
+            # reshape output to have expected shape
+            oshape = self.get_normal_output_shape()
+            context[node.output[0]] = context[node.output[0]].reshape(*oshape)
+        elif mode == "rtlsim":
+            sim = self.get_rtlsim()
+            nbits = self.get_instream_width()
+            inp = npy_to_rtlsim_input(
+                "{}/input_0.npy".format(code_gen_dir), export_idt, nbits
+            )
+            super().reset_rtlsim(sim)
+            super().toggle_clk(sim)
+            output = self.rtlsim(sim, inp)
+            odt = self.get_output_datatype()
+            target_bits = odt.bitwidth()
+            packed_bits = self.get_outstream_width()
+            out_npy_path = "{}/output.npy".format(code_gen_dir)
+            out_shape = self.get_folded_output_shape()
+            rtlsim_output_to_npy(
+                output, out_npy_path, odt, out_shape, packed_bits, target_bits
+            )
+
+            # load and reshape output
+            output = np.load(out_npy_path)
+            oshape = self.get_normal_output_shape()
+            output = np.asarray([output], dtype=np.float32).reshape(*oshape)
+            context[node.output[0]] = output
+        else:
+            raise Exception(
+                """Invalid value for attribute exec_mode! Is currently set to: {}
+            has to be set to one of the following value ("cppsim", "rtlsim")""".format(
+                    mode
+                )
+            )
+
+    def global_includes(self):
+        self.code_gen_dict["$GLOBALS$"] = ['#include "activations.hpp"']
+        self.code_gen_dict["$GLOBALS$"] += ['#include "thresh.h"']
+
+    # TODO check and add whatever missing
+    def defines(self, var):
+        numInputVectors = list(self.get_nodeattr("numInputVectors"))
+        numReps = numInputVectors[0]
+        self.code_gen_dict["$DEFINES$"] = [
+            """#define NumChannels1 {}\n #define PE1 {}\n #define numReps {}""".format(
+                self.get_nodeattr("NumChannels"), self.get_nodeattr("PE"), numReps,
+            )
+        ]
+
+    def read_npy_data(self):
+        code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
+        dtype = self.get_input_datatype()
+        elem_bits = dtype.bitwidth()
+        packed_bits = self.get_instream_width()
+        packed_hls_type = "ap_uint<%d>" % packed_bits
+        elem_hls_type = dtype.get_hls_datatype_str()
+        npy_type = "float"
+        npy_in = "%s/input_0.npy" % code_gen_dir
+        self.code_gen_dict["$READNPYDATA$"] = []
+        # note: the innermost dim is reversed for the input
+        self.code_gen_dict["$READNPYDATA$"].append(
+            'npy2apintstream<%s, %s, %d, %s>("%s", in0, false);'
+            % (packed_hls_type, elem_hls_type, elem_bits, npy_type, npy_in)
+        )
+
+    def strm_decl(self):
+        self.code_gen_dict["$STREAMDECLARATIONS$"] = []
+        self.code_gen_dict["$STREAMDECLARATIONS$"].append(
+            'hls::stream<ap_uint<{}>> in0 ("in0");'.format(self.get_instream_width())
+        )
+        self.code_gen_dict["$STREAMDECLARATIONS$"].append(
+            'hls::stream<ap_uint<{}>> out ("out");'.format(self.get_outstream_width())
+        )
+
+    def docompute(self):
+        tmpl_args = self.get_template_param_values()
+        # TODO: why put some template parameters into defines and not others?
+        # should ImgDim be defined or just filled in here like we do now?
+        node = self.onnx_node
+        ishape = self.get_folded_input_shape()
+        if len(ishape) == 3:
+            imgdim = 1
+        elif len(ishape) == 5:
+            imgdim = ishape[1]
+        else:
+            raise Exception("""Unexpeted input shape""")
+        self.code_gen_dict["$DOCOMPUTE$"] = [
+            """{}<{}, NumChannels1, PE1, {}, {}>
+            (in0, out, threshs, numReps);""".format(
+                node.op_type, imgdim, tmpl_args["TSrcI"], tmpl_args["TDstI"],
+            )
+        ]
+
+    def dataoutstrm(self):
+        code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
+        dtype = self.get_output_datatype()
+        if dtype == DataType.BIPOLAR:
+            # use binary for bipolar storage
+            dtype = DataType.BINARY
+        elem_bits = dtype.bitwidth()
+        packed_bits = self.get_outstream_width()
+        packed_hls_type = "ap_uint<%d>" % packed_bits
+        elem_hls_type = dtype.get_hls_datatype_str()
+        npy_type = "float"
+        npy_out = "%s/output.npy" % code_gen_dir
+        shape = self.get_folded_output_shape()
+        shape_cpp_str = str(shape).replace("(", "{").replace(")", "}")
+
+        # note: the innermost dim is not reversed for the output
+        self.code_gen_dict["$DATAOUTSTREAM$"] = [
+            'apintstream2npy<%s, %s, %d, %s>(out, %s, "%s", false);'
+            % (
+                packed_hls_type,
+                elem_hls_type,
+                elem_bits,
+                npy_type,
+                shape_cpp_str,
+                npy_out,
+            )
+        ]
+
+    def save_as_npy(self):
+        self.code_gen_dict["$SAVEASCNPY$"] = []
+
+    def blackboxfunction(self):
+        self.code_gen_dict["$BLACKBOXFUNCTION$"] = [
+            """void {}(hls::stream<ap_uint<{}>> &in0,
+                hls::stream<ap_uint<{}>> &out
+                )""".format(
+                self.onnx_node.name,
+                self.get_instream_width(),
+                self.get_outstream_width(),
+            )
+        ]
+
+    def pragmas(self):
+        self.code_gen_dict["$PRAGMAS$"] = ["#pragma HLS INTERFACE axis port=in0"]
+        self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out")
+        self.code_gen_dict["$PRAGMAS$"].append(
+            "#pragma HLS INTERFACE ap_ctrl_none port=return"
+        )
+
+        # the threshold tensor is acc_type [PE][TMEM][N_THRES]
+        # partition for parallel access along PE and N_THRES
+        # dimensions (dims 1 and 3)
+        self.code_gen_dict["$PRAGMAS$"].append(
+            (
+                "#pragma HLS ARRAY_PARTITION variable=threshs.m_thresholds "
+                "complete dim=1"
+            )
+        )
+        self.code_gen_dict["$PRAGMAS$"].append(
+            (
+                "#pragma HLS ARRAY_PARTITION variable=threshs.m_thresholds "
+                "complete dim=3"
+            )
+        )
+        # set resource type
+        ram_style = self.get_nodeattr("ram_style")
+        pe = self.get_nodeattr("PE")
+        ich = self.get_nodeattr("NumChannels")
+        # if PE less than NumChannels, assign cores according to ram_style;
+        # otherwise if PE == NumChannels, Vivado HLS will unroll to FFs
+        if pe < ich:
+            if ram_style == "distributed":
+                self.code_gen_dict["$PRAGMAS$"].append(
+                    (
+                        "#pragma HLS RESOURCE variable=threshs.m_thresholds "
+                        "core=ROM_2P_LUTRAM"
+                    )
+                )
+            elif ram_style == "block":
+                self.code_gen_dict["$PRAGMAS$"].append(
+                    (
+                        "#pragma HLS RESOURCE variable=threshs.m_thresholds "
+                        "core=ROM_2P_BRAM"
+                    )
+                )
+            else:
+                raise Exception(
+                    """Invalid value for attribute ram_style! Is currently set to: {}
+                has to be set to one of ("block", "distributed")""".format(
+                        ram_style
+                    )
+                )
diff --git a/src/finn/custom_op/registry.py b/src/finn/custom_op/registry.py
index f9b83fbbf3773fbbdd7c0a46d8bad9461cb3cd74..238829e03353d79fab7c51e7d1b9dca6e2a96a11 100644
--- a/src/finn/custom_op/registry.py
+++ b/src/finn/custom_op/registry.py
@@ -45,8 +45,10 @@ from finn.custom_op.fpgadataflow.streamingdatawidthconverter_batch import (
 )
 from finn.custom_op.fpgadataflow.globalaccpool_batch import GlobalAccPool_Batch
 from finn.custom_op.fpgadataflow.sameresize_batch import SameResize_Batch
+from finn.custom_op.fpgadataflow.thresholding_batch import Thresholding_Batch
 from finn.custom_op.fpgadataflow.addstreams_batch import AddStreams_Batch
 from finn.custom_op.fpgadataflow.labelselect_batch import LabelSelect_Batch
+from finn.custom_op.fpgadataflow.duplicatestreams_batch import DuplicateStreams_Batch
 
 # create a mapping of all known CustomOp names and classes
 custom_op = {}
@@ -64,8 +66,10 @@ custom_op["StreamingDataWidthConverter_Batch"] = StreamingDataWidthConverter_Bat
 custom_op["StreamingFIFO"] = StreamingFIFO
 custom_op["GlobalAccPool_Batch"] = GlobalAccPool_Batch
 custom_op["SameResize_Batch"] = SameResize_Batch
+custom_op["Thresholding_Batch"] = Thresholding_Batch
 custom_op["AddStreams_Batch"] = AddStreams_Batch
 custom_op["LabelSelect_Batch"] = LabelSelect_Batch
+custom_op["DuplicateStreams_Batch"] = DuplicateStreams_Batch
 
 
 def getCustomOp(node):
diff --git a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py
index dbd98623c4cdf5baca9fa9c137debf8be0f70981..3ff86cab48d365c10e69bc2c764e8083c6a36880 100644
--- a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py
+++ b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py
@@ -33,6 +33,7 @@ from finn.transformation import Transformation
 from finn.custom_op.registry import getCustomOp
 from finn.transformation.infer_shapes import InferShapes
 from finn.transformation.infer_datatypes import InferDataTypes
+import finn.core.data_layout as DataLayout
 
 
 class InferConvInpGen(Transformation):
@@ -398,3 +399,59 @@ class InferQuantizedStreamingFCLayer(Transformation):
             model = model.transform(InferShapes())
             model = model.transform(InferDataTypes())
         return (model, graph_modified)
+
+
+class InferThresholdingLayer(Transformation):
+    """Convert any MultiThreshold into a standalone thresholding HLS layer."""
+
+    def apply(self, model):
+        graph = model.graph
+        node_ind = 0
+        graph_modified = False
+        for node in graph.node:
+            node_ind += 1
+            if node.op_type == "MultiThreshold":
+                thl_input = node.input[0]
+                thl_threshold = node.input[1]
+                thl_output = node.output[0]
+                thl_in_shape = model.get_tensor_shape(thl_input)
+                idt = model.get_tensor_datatype(thl_input)
+
+                # skip conversion for layers with float input
+                if not idt.is_integer():
+                    continue
+
+                # skip conversion if input is not NHWC or NC
+                thl_in_layout = model.get_tensor_layout(thl_input)
+                if thl_in_layout != DataLayout.NHWC and thl_in_layout != DataLayout.NC:
+                    continue
+
+                # now safe to assume number of channels is in last dimension
+                ifc = int(thl_in_shape[-1])
+                # create node with no parallelization first
+                pe = 1
+                assert ifc % pe == 0, "Requirement IFC divisable by PE is violated."
+
+                odt = model.get_tensor_datatype(thl_output)
+                # create and insert new StreamingFCLayer node
+                new_node = helper.make_node(
+                    "Thresholding_Batch",
+                    [thl_input, thl_threshold],
+                    [thl_output],
+                    domain="finn",
+                    backend="fpgadataflow",
+                    NumChannels=ifc,
+                    PE=pe,
+                    inputDataType=idt.name,
+                    outputDataType=odt.name,
+                    numInputVectors=list(thl_in_shape[:-1]),
+                )
+                graph.node.insert(node_ind, new_node)
+                # remove old node
+                graph.node.remove(node)
+                graph_modified = True
+
+        if graph_modified:
+            model = model.transform(InferShapes())
+            model = model.transform(InferDataTypes())
+        return (model, graph_modified)
diff --git a/src/finn/transformation/general.py b/src/finn/transformation/general.py
index 53c73e1dc4fe0bfab53e3f126add992cb338c11d..f51ffbcfd9f62e06bf4942409fbb163e92ff6370 100644
--- a/src/finn/transformation/general.py
+++ b/src/finn/transformation/general.py
@@ -81,6 +81,41 @@ class GiveReadableTensorNames(Transformation):
         return (model, False)
 
 
+class GiveUniqueParameterTensors(Transformation):
+    """Make every parameter tensor unique. The aim is to avoid affecting
+    other nodes apart from the one the system is currently operating on."""
+
+    def apply(self, model):
+        graph = model.graph
+        graph_modified = False
+        seen_parameters = []
+        for n in graph.node:
+            # copy inputs since they may be modified
+            node_inputs_list = [x for x in n.input]
+            for input_idx, node_input in enumerate(node_inputs_list):
+                # check if it's a parameter
+                input_init = model.get_initializer(node_input)
+                if input_init is None:
+                    # dynamic input
+                    continue
+
+                # check if repeated
+                if node_input not in seen_parameters:
+                    # first occurance
+                    seen_parameters += [node_input]
+                    continue
+                    
+                new_param_name = model.make_new_valueinfo_name()
+
+                model.set_initializer(new_param_name, input_init)
+                model.set_tensor_datatype(new_param_name, model.get_tensor_datatype(node_input))
+
+                # point node input to new tensor
+                n.input[input_idx] = new_param_name
+
+        return (model, graph_modified)
+
+
 class ConvertSubToAdd(Transformation):
     """Convert subtract-a-constant nodes to add-a-constant nodes."""
 
diff --git a/src/finn/transformation/infer_data_layouts.py b/src/finn/transformation/infer_data_layouts.py
new file mode 100644
index 0000000000000000000000000000000000000000..9ac75578ffb911cc44cfddc2b2119b55e6abf2dd
--- /dev/null
+++ b/src/finn/transformation/infer_data_layouts.py
@@ -0,0 +1,116 @@
+# Copyright (c) 2020, Xilinx
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright notice, this
+#   list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright notice,
+#   this list of conditions and the following disclaimer in the documentation
+#   and/or other materials provided with the distribution.
+#
+# * Neither the name of FINN nor the names of its
+#   contributors may be used to endorse or promote products derived from
+#   this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+import finn.custom_op.registry as registry
+import finn.core.data_layout as DataLayout
+from finn.transformation import Transformation
+import warnings
+from finn.util.basic import get_by_name
+
+
+def _dims_to_layout(model, node, ndims):
+    if ndims == 2:
+        return DataLayout.NC
+    else:
+        if node.domain == "finn":
+            if node.op_type == "MultiThreshold":
+                mt_inst = registry.getCustomOp(node)
+                layout = mt_inst.get_nodeattr("data_layout")
+                if layout == "NHWC" and ndims == 4:
+                    return DataLayout.NHWC
+                elif layout == "NCHW" and ndims == 4:
+                    return DataLayout.NCHW
+                else:
+                    return DataLayout.UNKNOWN
+            else:
+                if ndims == 4:
+                    return DataLayout.NHWC
+                else:
+                    return DataLayout.UNKNOWN
+        else:
+            # propagate input layout to output
+            # TODO this won't work for concat, squeeze/unsqueeze/reshape...
+            return model.get_tensor_layout(node.input[0])
+
+
+def _infer_node_data_layout(model, node):
+    """Infer output data layout annotation(s) for a particular node.
+    Returns True if any changes were made."""
+    old_layouts = list(map(lambda x: model.get_tensor_layout(x), node.output))
+    if node.domain == "finn":
+        # try to guess based on number of output dims
+        for o in node.output:
+            ndims = len(model.get_tensor_shape(o))
+            new_layout = _dims_to_layout(model, node, ndims)
+            model.set_tensor_layout(o, new_layout)
+    else:
+        if node.op_type == "Transpose":
+            # grab input annotation and switch it around using perm
+            perm = get_by_name(node.attribute, "perm").ints
+            inp_layout = model.get_tensor_layout(node.input[0])
+            out_layout = [inp_layout[i] for i in perm]
+            model.set_tensor_layout(node.output[0], out_layout)
+        else:
+            # try to guess based on number of output dims
+            for o in node.output:
+                ndims = len(model.get_tensor_shape(o))
+                model.set_tensor_layout(o, _dims_to_layout(model, node, ndims))
+    # compare old and new output dtypes to see if anything changed
+    new_layouts = list(map(lambda x: model.get_tensor_layout(x), node.output))
+    graph_modified = new_layouts != old_layouts
+    return graph_modified
+
+
+class InferDataLayouts(Transformation):
+    """Try to infer data layout annotations info for all input/intermediate/output
+    tensors based on inputs and node type."""
+
+    def apply(self, model):
+        graph = model.graph
+        graph_modified = False
+        # first, make sure that the global input has an annotation
+        # this is really hard to do in general, so we do some bad guesswork
+        inp_name = graph.input[0].name
+        if model.get_tensor_layout(inp_name) is None:
+            inp_shape = model.get_tensor_shape(inp_name)
+            if len(inp_shape) == 4:
+                warnings.warn("Assuming 4D input is NCHW")
+                model.set_tensor_layout(inp_name, DataLayout.NCHW)
+                graph_modified = True
+            elif len(inp_shape) == 2:
+                graph_modified = True
+                warnings.warn("Assuming 2D input is NC")
+                model.set_tensor_layout(inp_name, DataLayout.NC)
+            else:
+                raise Exception(
+                    """Unknown number of dims for input, don't know
+                how to annotate"""
+                )
+        for node in graph.node:
+            graph_modified |= _infer_node_data_layout(model, node)
+        return (model, graph_modified)
diff --git a/src/finn/transformation/streamline/reorder.py b/src/finn/transformation/streamline/reorder.py
index 96046602efb32a9262a4cf0bbb21a8367d719910..b91ffdb3f731d27d9a6ba68b090f3881e6d7293a 100644
--- a/src/finn/transformation/streamline/reorder.py
+++ b/src/finn/transformation/streamline/reorder.py
@@ -34,12 +34,11 @@ from finn.transformation.infer_shapes import InferShapes
 from finn.core.onnx_exec import execute_node
 from finn.util.basic import get_by_name
 
-def is_scalar(x):
-    return np.prod(x.shape) == 1
 
 class MoveAddPastMul(Transformation):
-    """Move add operations past multiply operations. The aim is to have them
-    next to each other such that they can be collapsed into a single add."""
+    """Move add operations past multiply operations on linear segments of the graph.
+    The aim is to have them next to each other such that they can be collapsed into
+    a single add."""
 
     def apply(self, model):
         graph = model.graph
@@ -47,9 +46,17 @@ class MoveAddPastMul(Transformation):
         graph_modified = False
         for n in graph.node:
             node_ind += 1
-            if n.op_type == "Add":
+            if (
+                n.op_type == "Add"
+                and not model.is_fork_node(n)
+                and not model.is_join_node(n)
+            ):
                 consumer = model.find_consumer(n.output[0])
-                if consumer is not None and consumer.op_type == "Mul":
+                if (
+                    consumer is not None
+                    and consumer.op_type == "Mul"
+                    and not model.is_join_node(consumer)
+                ):
                     # have: (x) -> add(,B) -> (x+B) -> mul(,A) -> (xA+BA)
                     # want: (x) -> mul(,A) -> (xA) -> add(,BA) -> (xA+BA)
                     # assume input 0 is from the previous layer, input 1 is the
@@ -65,12 +72,16 @@ class MoveAddPastMul(Transformation):
                     end_name = consumer.output[0]
                     # compute new param value for add
                     BA = B * A
+
                     # make and insert new nodes
                     new_mul = oh.make_node(
-                        "Mul", [start_name, mul_weight_name], [middle_name]
+                        "Mul",
+                        [start_name, mul_weight_name],
+                        [middle_name],
+                        name=consumer.name,
                     )
                     new_add = oh.make_node(
-                        "Add", [middle_name, add_weight_name], [end_name]
+                        "Add", [middle_name, add_weight_name], [end_name], name=n.name
                     )
                     graph.node.insert(node_ind, new_mul)
                     graph.node.insert(node_ind + 1, new_add)
@@ -80,6 +91,7 @@ class MoveAddPastMul(Transformation):
                     graph.node.remove(n)
                     graph.node.remove(consumer)
                     graph_modified = True
+
         model = model.transform(InferShapes())
         return (model, graph_modified)
 
@@ -94,9 +106,17 @@ class MoveScalarMulPastMatMul(Transformation):
         graph_modified = False
         for n in graph.node:
             node_ind += 1
-            if n.op_type == "Mul":
+            if (
+                n.op_type == "Mul"
+                and not model.is_fork_node(n)
+                and not model.is_join_node(n)
+            ):
                 consumer = model.find_consumer(n.output[0])
-                if consumer is not None and consumer.op_type == "MatMul":
+                if (
+                    consumer is not None
+                    and consumer.op_type == "MatMul"
+                    and not model.is_join_node(consumer)
+                ):
                     mul_weight_name = n.input[1]
                     matmul_weight_name = consumer.input[1]
                     A = model.get_initializer(mul_weight_name)
@@ -111,10 +131,16 @@ class MoveScalarMulPastMatMul(Transformation):
                         # if the mul is scalar, we can simply swap the order of ops
                         # make and insert new nodes
                         new_matmul = oh.make_node(
-                            "MatMul", [start_name, matmul_weight_name], [middle_name]
+                            "MatMul",
+                            [start_name, matmul_weight_name],
+                            [middle_name],
+                            name=consumer.name,
                         )
                         new_mul = oh.make_node(
-                            "Mul", [middle_name, mul_weight_name], [end_name]
+                            "Mul",
+                            [middle_name, mul_weight_name],
+                            [end_name],
+                            name=n.name,
                         )
                         graph.node.insert(node_ind, new_matmul)
                         graph.node.insert(node_ind + 1, new_mul)
@@ -137,9 +163,17 @@ class MoveScalarAddPastMatMul(Transformation):
         graph_modified = False
         for n in graph.node:
             node_ind += 1
-            if n.op_type == "Add":
+            if (
+                n.op_type == "Add"
+                and not model.is_fork_node(n)
+                and not model.is_join_node(n)
+            ):
                 consumer = model.find_consumer(n.output[0])
-                if consumer is not None and consumer.op_type == "MatMul":
+                if (
+                    consumer is not None
+                    and consumer.op_type == "MatMul"
+                    and not model.is_join_node(consumer)
+                ):
                     add_weight_name = n.input[1]
                     matmul_weight_name = consumer.input[1]
                     A = model.get_initializer(add_weight_name)
@@ -157,10 +191,16 @@ class MoveScalarAddPastMatMul(Transformation):
                         # update the add weight
                         model.set_initializer(add_weight_name, Anew)
                         new_matmul = oh.make_node(
-                            "MatMul", [start_name, matmul_weight_name], [middle_name]
+                            "MatMul",
+                            [start_name, matmul_weight_name],
+                            [middle_name],
+                            name=consumer.name,
                         )
                         new_add = oh.make_node(
-                            "Add", [middle_name, add_weight_name], [end_name]
+                            "Add",
+                            [middle_name, add_weight_name],
+                            [end_name],
+                            name=n.name,
                         )
                         graph.node.insert(node_ind, new_matmul)
                         graph.node.insert(node_ind + 1, new_add)
@@ -183,9 +223,17 @@ class MoveScalarAddPastConv(Transformation):
         graph_modified = False
         for n in graph.node:
             node_ind += 1
-            if n.op_type == "Add":
+            if (
+                n.op_type == "Add"
+                and not model.is_fork_node(n)
+                and not model.is_join_node(n)
+            ):
                 consumer = model.find_consumer(n.output[0])
-                if consumer is not None and consumer.op_type == "Conv":
+                if (
+                    consumer is not None
+                    and consumer.op_type == "Conv"
+                    and not model.is_join_node(consumer)
+                ):
                     conv_node = consumer
                     add_node = n
                     add_weight_name = n.input[1]
@@ -240,9 +288,17 @@ class MoveScalarMulPastConv(Transformation):
         graph_modified = False
         for n in graph.node:
             node_ind += 1
-            if n.op_type == "Mul":
+            if (
+                n.op_type == "Mul"
+                and not model.is_fork_node(n)
+                and not model.is_join_node(n)
+            ):
                 consumer = model.find_consumer(n.output[0])
-                if consumer is not None and consumer.op_type == "Conv":
+                if (
+                    consumer is not None
+                    and consumer.op_type == "Conv"
+                    and not model.is_join_node(consumer)
+                ):
                     mul_weight_name = n.input[1]
                     A = model.get_initializer(mul_weight_name)
                     assert A is not None, "Initializer for mul weights is not set."
@@ -273,12 +329,12 @@ class MoveScalarMulPastConv(Transformation):
         return (model, graph_modified)
 
 
-class MoveScalarLinearPastEltwiseAdd(Transformation):
-    """Move scalar linear operations (mul, add) past elementwise add operations where possible. Specifically,
-       matches and transforms the following patterns:
+class MoveLinearPastEltwiseAdd(Transformation):
+    """Move linear operations (mul, add) past elementwise add operations where possible.
+       Specifically,matches and transforms the following patterns:
        (x*C) + (y*C) -> (x + y) * C
        (x+A) + (y+B) -> (x + y) + (A + B)
-       where x and y are dynamic inputs, A, B, C are constants.
+       where x and y are dynamic inputs, A, B, C are constant tensors (in general).
     """
 
     def move_node(self, graph, n, prod0, prod1, node_ind):
@@ -305,7 +361,8 @@ class MoveScalarLinearPastEltwiseAdd(Transformation):
         graph = model.graph
         node_ind = 0
         graph_modified = False
-        for n in graph.node:
+        nodes = [n for n in graph.node]
+        for n in nodes:
             node_ind += 1
             if n.op_type == "Add":
                 # check for tensors on both inputs (eltwise add)
@@ -321,17 +378,16 @@ class MoveScalarLinearPastEltwiseAdd(Transformation):
                 # check for mul with same initializer on both inputs
                 prod0 = model.find_producer(in0)
                 prod1 = model.find_producer(in1)
-                if prod0 is None or prod1 is None:
+                # Also check case when both branches are empty and come
+                # from the same node: (prod0 == prod1)
+                # Other transform should handle that
+                if prod0 is None or prod1 is None or (prod0 == prod1):
                     continue
                 init0 = model.get_initializer(prod0.input[1])
                 init1 = model.get_initializer(prod1.input[1])
                 # if either initializer is None, skip
                 if init0 is None or init1 is None:
                     continue
-                # if either initializer is non-scalar, skip
-                # TODO relax this to 1D tensors?
-                if (not is_scalar(init0)) or (not is_scalar(init1)):
-                    continue
                 if prod0.op_type == "Mul" and prod1.op_type == "Mul":
                     if np.array_equal(init0, init1):
                         self.move_node(graph, n, prod0, prod1, node_ind)
diff --git a/src/finn/util/fpgadataflow.py b/src/finn/util/fpgadataflow.py
index 9a2708439c0fed1e25c0d955af21cd2e9e705446..d1669444e55cb0fddb2690e51849c4603d47d32c 100644
--- a/src/finn/util/fpgadataflow.py
+++ b/src/finn/util/fpgadataflow.py
@@ -83,14 +83,27 @@ def pyverilate_stitched_ip(model):
     def file_to_dir(x):
         return os.path.dirname(os.path.realpath(x))
 
+    def file_to_basename(x):
+        return os.path.basename(os.path.realpath(x))
+
     all_verilog_dirs = list(map(file_to_dir, all_verilog_srcs))
-    top_verilog = model.get_metadata_prop("wrapper_filename")
+    all_verilog_files = list(
+        set(
+            filter(
+                lambda x: x.endswith(".v"),
+                list(map(file_to_basename, all_verilog_srcs)),
+            )
+        )
+    )
+    top_module_name = model.get_metadata_prop("wrapper_filename")
+    top_module_name = file_to_basename(top_module_name).strip(".v")
     build_dir = make_build_dir("pyverilator_ipstitched_")
     sim = PyVerilator.build(
-        top_verilog,
+        all_verilog_files,
         verilog_path=all_verilog_dirs,
         build_dir=build_dir,
         trace_depth=get_rtlsim_trace_depth(),
+        top_module_name=top_module_name,
     )
     return sim
 
@@ -114,3 +127,91 @@ def is_fpgadataflow_node(node):
                     is_node = True
 
     return is_node
+
+
+def rtlsim_multi_io(sim, io_dict, num_out_values, trace_file=""):
+    """Runs the pyverilator simulation by passing the input values to the simulation,
+    toggle the clock and observing the execution time. Function contains also an
+    observation loop that can abort the simulation if no output value is produced
+    after a set number of cycles. Can handle multiple i/o streams. See function
+    implementation for details on how the top-level signals should be named.
+
+    sim: the PyVerilator object for simulation
+    io_dict: a dict of dicts in the following format:
+            {"inputs" : {"in0" : <input_data>, "in1" : <input_data>},
+             "outputs" : {"out0" : [], "out1" : []} }
+            <input_data> is a list of Python arbitrary-precision ints indicating
+            what data to push into the simulation, and the output lists are
+            similarly filled when the simulation is complete
+    num_out_values: number of total values to be read from the simulation to
+                    finish the simulation and return.
+
+    returns: number of clock cycles elapsed for completion
+
+    """
+
+    if trace_file != "":
+        sim.start_vcd_trace(trace_file)
+
+    for outp in io_dict["outputs"]:
+        sim.io[outp + "_V_V_TREADY"] = 1
+
+    # observe if output is completely calculated
+    # total_cycle_count will contain the number of cycles the calculation ran
+    output_done = False
+    total_cycle_count = 0
+    output_count = 0
+    old_output_count = 0
+
+    # avoid infinite looping of simulation by aborting when there is no change in
+    # output values after 100 cycles
+    no_change_count = 0
+    liveness_threshold = pyverilate_get_liveness_threshold_cycles()
+
+    while not (output_done):
+        for inp in io_dict["inputs"]:
+            inputs = io_dict["inputs"][inp]
+            sim.io[inp + "_V_V_TVALID"] = 1 if len(inputs) > 0 else 0
+            sim.io[inp + "_V_V_TDATA"] = inputs[0] if len(inputs) > 0 else 0
+            if sim.io[inp + "_V_V_TREADY"] == 1 and sim.io[inp + "_V_V_TVALID"] == 1:
+                inputs = inputs[1:]
+            io_dict["inputs"][inp] = inputs
+
+        for outp in io_dict["outputs"]:
+            outputs = io_dict["outputs"][outp]
+            if sim.io[outp + "_V_V_TVALID"] == 1 and sim.io[outp + "_V_V_TREADY"] == 1:
+                outputs = outputs + [sim.io[outp + "_V_V_TDATA"]]
+                output_count += 1
+            io_dict["outputs"][outp] = outputs
+
+        sim.io.ap_clk = 1
+        sim.io.ap_clk = 0
+
+        total_cycle_count = total_cycle_count + 1
+
+        if output_count == old_output_count:
+            no_change_count = no_change_count + 1
+        else:
+            no_change_count = 0
+            old_output_count = output_count
+
+        # check if all expected output words received
+        if output_count == num_out_values:
+            output_done = True
+
+        # end sim on timeout
+        if no_change_count == liveness_threshold:
+            if trace_file != "":
+                sim.flush_vcd_trace()
+                sim.stop_vcd_trace()
+            raise Exception(
+                "Error in simulation! Takes too long to produce output. "
+                "Consider setting the LIVENESS_THRESHOLD env.var. to a "
+                "larger value."
+            )
+
+    if trace_file != "":
+        sim.flush_vcd_trace()
+        sim.stop_vcd_trace()
+
+    return total_cycle_count
diff --git a/tests/core/test_modelwrapper.py b/tests/core/test_modelwrapper.py
index 839710681640deca01aa40d3ab420016f0e48165..4bd9385536bc6721c66726169dfa4c69e5f06772 100644
--- a/tests/core/test_modelwrapper.py
+++ b/tests/core/test_modelwrapper.py
@@ -31,6 +31,7 @@ import onnx
 from collections import Counter
 import brevitas.onnx as bo
 import numpy as np
+import finn.core.data_layout as DataLayout
 
 from finn.core.modelwrapper import ModelWrapper
 from finn.util.test import get_test_model_trained
@@ -67,6 +68,11 @@ def test_modelwrapper():
     assert inp_cons.op_type == "MatMul"
     out_prod = model.find_producer(l0_inp_tensor_name)
     assert out_prod.op_type == "MultiThreshold"
+    inp_layout = model.get_tensor_layout(inp_name)
+    assert inp_layout is None
+    inp_layout = DataLayout.NCHW
+    model.set_tensor_layout(inp_name, inp_layout)
+    assert model.get_tensor_layout(inp_name) == inp_layout
     os.remove(export_onnx_path)
 
 
@@ -121,3 +127,45 @@ def test_modelwrapper_graph_order():
     assert model.get_node_index(Round_node) == 1
     assert model.get_node_index(Ceil_node) == 2
     assert model.get_node_index(Add_node) == 3
+
+
+def test_modelwrapper_detect_forks_n_joins():
+    # create small network with properties to be tested
+    Neg_node = onnx.helper.make_node("Neg", inputs=["in1"], outputs=["neg1"])
+    Round_node = onnx.helper.make_node("Round", inputs=["neg1"], outputs=["round1"])
+
+    Ceil_node = onnx.helper.make_node("Ceil", inputs=["neg1"], outputs=["ceil1"])
+    Add_node = onnx.helper.make_node(
+        "Add", inputs=["round1", "ceil1"], outputs=["out1"]
+    )
+
+    in1 = onnx.helper.make_tensor_value_info("in1", onnx.TensorProto.FLOAT, [4, 4])
+    out1 = onnx.helper.make_tensor_value_info("out1", onnx.TensorProto.FLOAT, [4, 4])
+
+    graph = onnx.helper.make_graph(
+        nodes=[Neg_node, Round_node, Ceil_node, Add_node],
+        name="simple_graph",
+        inputs=[in1],
+        outputs=[out1],
+        value_info=[
+            onnx.helper.make_tensor_value_info("neg1", onnx.TensorProto.FLOAT, [4, 4]),
+            onnx.helper.make_tensor_value_info(
+                "round1", onnx.TensorProto.FLOAT, [4, 4]
+            ),
+            onnx.helper.make_tensor_value_info("ceil1", onnx.TensorProto.FLOAT, [4, 4]),
+        ],
+    )
+
+    onnx_model = onnx.helper.make_model(graph, producer_name="simple-model")
+    model = ModelWrapper(onnx_model)
+
+    # test
+    assert model.is_fork_node(Neg_node)
+    assert not model.is_fork_node(Round_node)
+    assert not model.is_fork_node(Ceil_node)
+    assert not model.is_fork_node(Add_node)
+
+    assert not model.is_join_node(Neg_node)
+    assert not model.is_join_node(Round_node)
+    assert not model.is_join_node(Ceil_node)
+    assert model.is_join_node(Add_node)
diff --git a/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py b/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py
index e03090f0581eebf68cac7baffb6888a6992df68d..48803c9614f53a3a149c6eaac4289d10086513a5 100644
--- a/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py
+++ b/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py
@@ -39,6 +39,7 @@ from finn.core.modelwrapper import ModelWrapper
 from finn.transformation.fold_constants import FoldConstants
 from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames
 from finn.transformation.infer_shapes import InferShapes
+from finn.transformation.infer_data_layouts import InferDataLayouts
 from finn.transformation.streamline import Streamline
 from finn.util.test import get_test_model_trained
 from finn.transformation.double_to_single_float import DoubleToSingleFloat
@@ -54,7 +55,9 @@ export_onnx_path_cnv = "test_output_cnv.onnx"
 
 
 @pytest.mark.vivado
-def test_convert_to_hls_layers_cnv_w1a1():
+# Standalone or fused thresholding-based activation
+@pytest.mark.parametrize("fused_activation", [True, False])
+def test_convert_to_hls_layers_cnv_w1a1(fused_activation):
     cnv = get_test_model_trained("CNV", 1, 1)
     bo.export_finn_onnx(cnv, (1, 3, 32, 32), export_onnx_path_cnv)
     model = ModelWrapper(export_onnx_path_cnv)
@@ -69,6 +72,7 @@ def test_convert_to_hls_layers_cnv_w1a1():
     model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
     model = model.transform(ConvertBipolarMatMulToXnorPopcount())
     model = model.transform(Streamline())
+    model = model.transform(InferDataLayouts())
     # model.save("golden.onnx")
     # load one of the test vectors
     fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz")
@@ -80,6 +84,10 @@ def test_convert_to_hls_layers_cnv_w1a1():
     expected_ctx = oxe.execute_onnx(model, input_dict, True)
     expected = expected_ctx[model.graph.output[0].name]
 
+    # if we infer thresholding first, all MultiThresholds get converted to HLS
+    # subsequently, the FC inference will generate passthrough MVAUs
+    if not fused_activation:
+        model = model.transform(to_hls.InferThresholdingLayer())
     model = model.transform(to_hls.InferBinaryStreamingFCLayer())
     model = model.transform(to_hls.InferQuantizedStreamingFCLayer())
     for node in model.graph.node:
@@ -102,7 +110,12 @@ def test_convert_to_hls_layers_cnv_w1a1():
     model = model.transform(to_hls.InferStreamingMaxPool())
     # check topology status
     finn_nodes = model.get_finn_nodes()
-    assert len(finn_nodes) == 18
+    if fused_activation:
+        assert len(finn_nodes) == 18
+    else:
+        assert len(finn_nodes) == 26
+        thr_nodes = model.get_nodes_by_op_type("Thresholding_Batch")
+        assert len(thr_nodes) == 8
     non_finn_nodes = model.get_non_finn_nodes()
     assert len(non_finn_nodes) == 4
     exp_non_finn_nodes = ["Transpose", "Reshape", "Mul", "Add"]
diff --git a/tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py b/tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py
new file mode 100644
index 0000000000000000000000000000000000000000..4fb84be59333ef0e696204c9064fcf77e35b5d9b
--- /dev/null
+++ b/tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py
@@ -0,0 +1,127 @@
+# Copyright (c) 2020, Xilinx
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright notice, this
+#   list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright notice,
+#   this list of conditions and the following disclaimer in the documentation
+#   and/or other materials provided with the distribution.
+#
+# * Neither the name of FINN nor the names of its
+#   contributors may be used to endorse or promote products derived from
+#   this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+import pytest
+
+from onnx import TensorProto, helper
+
+import finn.core.onnx_exec as oxe
+from finn.core.datatype import DataType
+from finn.core.modelwrapper import ModelWrapper
+from finn.transformation.fpgadataflow.prepare_ip import PrepareIP
+from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim
+from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim
+from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP
+from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode
+from finn.transformation.general import GiveUniqueNodeNames
+from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim
+from finn.util.basic import gen_finn_dt_tensor
+from finn.transformation.fpgadataflow.replace_verilog_relpaths import (
+    ReplaceVerilogRelPaths,
+)
+
+
+def make_dupstreams_modelwrapper(ch, pe, idim, idt):
+    shape = [1, idim, idim, ch]
+    inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, shape)
+    outp0 = helper.make_tensor_value_info("outp0", TensorProto.FLOAT, shape)
+    outp1 = helper.make_tensor_value_info("outp1", TensorProto.FLOAT, shape)
+
+    dupstrm_node = helper.make_node(
+        "DuplicateStreams_Batch",
+        ["inp"],
+        ["outp0", "outp1"],
+        domain="finn",
+        backend="fpgadataflow",
+        NumChannels=ch,
+        PE=pe,
+        inputDataType=idt.name,
+        numInputVectors=[1, idim, idim],
+    )
+    graph = helper.make_graph(
+        nodes=[dupstrm_node], name="graph", inputs=[inp], outputs=[outp0, outp1]
+    )
+
+    model = helper.make_model(graph, producer_name="addstreams-model")
+    model = ModelWrapper(model)
+
+    model.set_tensor_datatype("inp", idt)
+
+    return model
+
+
+def prepare_inputs(input_tensor, idt):
+    return {"inp": input_tensor}
+
+
+# data type
+@pytest.mark.parametrize("idt", [DataType.INT4, DataType.UINT16])
+# channels
+@pytest.mark.parametrize("ch", [64])
+# folding
+@pytest.mark.parametrize("fold", [-1, 2, 1])
+# image dimension
+@pytest.mark.parametrize("imdim", [7])
+# execution mode
+@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"])
+@pytest.mark.vivado
+def test_fpgadataflow_duplicatestreams(idt, ch, fold, imdim, exec_mode):
+    if fold == -1:
+        pe = 1
+    else:
+        pe = ch // fold
+    assert ch % pe == 0
+
+    # generate input data
+    x = gen_finn_dt_tensor(idt, (1, imdim, imdim, ch))
+
+    model = make_dupstreams_modelwrapper(ch, pe, imdim, idt)
+
+    if exec_mode == "cppsim":
+        model = model.transform(PrepareCppSim())
+        model = model.transform(CompileCppSim())
+        model = model.transform(SetExecMode("cppsim"))
+    elif exec_mode == "rtlsim":
+        model = model.transform(SetExecMode("rtlsim"))
+        model = model.transform(GiveUniqueNodeNames())
+        model = model.transform(PrepareIP("xc7z020clg400-1", 5))
+        model = model.transform(HLSSynthIP())
+        model = model.transform(ReplaceVerilogRelPaths())
+        model = model.transform(PrepareRTLSim())
+    else:
+        raise Exception("Unknown exec_mode")
+
+    # prepare input data and execute
+    input_dict = prepare_inputs(x, idt)
+    output_dict = oxe.execute_onnx(model, input_dict)
+    y0 = output_dict["outp0"]
+    y1 = output_dict["outp1"]
+    expected_y = x
+
+    assert (y0 == expected_y).all(), exec_mode + " failed"
+    assert (y1 == expected_y).all(), exec_mode + " failed"
diff --git a/tests/fpgadataflow/test_fpgadataflow_thresholding.py b/tests/fpgadataflow/test_fpgadataflow_thresholding.py
new file mode 100644
index 0000000000000000000000000000000000000000..50b990f13494f22e985406791445b406e9946147
--- /dev/null
+++ b/tests/fpgadataflow/test_fpgadataflow_thresholding.py
@@ -0,0 +1,154 @@
+# Copyright (c) 2020, Xilinx
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright notice, this
+#   list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright notice,
+#   this list of conditions and the following disclaimer in the documentation
+#   and/or other materials provided with the distribution.
+#
+# * Neither the name of FINN nor the names of its
+#   contributors may be used to endorse or promote products derived from
+#   this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+import pytest
+
+import numpy as np
+from onnx import TensorProto, helper
+
+import finn.core.onnx_exec as oxe
+from finn.analysis.fpgadataflow.hls_synth_res_estimation import hls_synth_res_estimation
+from finn.core.datatype import DataType
+from finn.core.modelwrapper import ModelWrapper
+from finn.custom_op.multithreshold import multithreshold
+from finn.transformation.fpgadataflow.prepare_ip import PrepareIP
+from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim
+from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim
+from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP
+from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode
+from finn.transformation.general import GiveUniqueNodeNames
+from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim
+from finn.util.basic import gen_finn_dt_tensor
+from finn.transformation.fpgadataflow.replace_verilog_relpaths import (
+    ReplaceVerilogRelPaths,
+)
+
+
+def make_single_thresholding_modelwrapper(T, pe, idt, odt):
+    NumChannels = T.shape[0]
+
+    inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, NumChannels])
+    outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, NumChannels])
+
+    node_inp_list = ["inp", "thresh"]
+
+    Thresholding_node = helper.make_node(
+        "Thresholding_Batch",
+        node_inp_list,
+        ["outp"],
+        domain="finn",
+        backend="fpgadataflow",
+        NumChannels=NumChannels,
+        PE=pe,
+        inputDataType=idt.name,
+        outputDataType=odt.name,
+    )
+    graph = helper.make_graph(
+        nodes=[Thresholding_node],
+        name="thresholding_graph",
+        inputs=[inp],
+        outputs=[outp],
+    )
+
+    model = helper.make_model(graph, producer_name="thresholding-model")
+    model = ModelWrapper(model)
+
+    model.set_tensor_datatype("inp", idt)
+    model.set_tensor_datatype("outp", odt)
+
+    model.set_tensor_datatype("thresh", idt)
+    model.set_initializer("thresh", T)
+    return model
+
+
+# activation: None or DataType
+@pytest.mark.parametrize("act", [DataType.INT4, DataType.BIPOLAR])
+# input datatype
+@pytest.mark.parametrize("idt", [DataType.INT16, DataType.UINT16])
+# folding, -1 is maximum possible
+@pytest.mark.parametrize("nf", [-1, 2, 1])
+# number of input features
+@pytest.mark.parametrize("ich", [16])
+# execution mode
+@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"])
+@pytest.mark.vivado
+@pytest.mark.slow
+def test_fpgadataflow_thresholding(idt, act, nf, ich, exec_mode):
+    if nf == -1:
+        nf = ich
+    pe = ich // nf
+    assert ich % pe == 0
+
+    # generate input data
+    x = gen_finn_dt_tensor(idt, (1, ich))
+
+    odt = act
+    n_steps = act.get_num_possible_values() - 1
+    T = np.random.randint(idt.min(), idt.max() + 1, (ich, n_steps)).astype(np.float32)
+    # provide non-decreasing thresholds
+    T = np.sort(T, axis=1)
+
+    model = make_single_thresholding_modelwrapper(T, pe, idt, odt)
+
+    if exec_mode == "cppsim":
+        model = model.transform(PrepareCppSim())
+        model = model.transform(CompileCppSim())
+        model = model.transform(SetExecMode("cppsim"))
+    elif exec_mode == "rtlsim":
+        model = model.transform(SetExecMode("rtlsim"))
+        model = model.transform(GiveUniqueNodeNames())
+        model = model.transform(PrepareIP("xc7z020clg400-1", 5))
+        model = model.transform(HLSSynthIP())
+        model = model.transform(ReplaceVerilogRelPaths())
+        model = model.transform(PrepareRTLSim())
+    else:
+        raise Exception("Unknown exec_mode")
+
+    # package input data as dictionary
+    input_dict = {"inp": x}
+
+    y = multithreshold(x, T)
+    if act == DataType.BIPOLAR:
+        # binary to bipolar
+        y = 2 * y - 1
+    else:
+        # signed offset
+        y += act.min()
+
+    oshape = model.get_tensor_shape("outp")
+    y_expected = y.reshape(oshape)
+    # execute model
+    y_produced = oxe.execute_onnx(model, input_dict)["outp"]
+
+    y_produced = y_produced.reshape(y_expected.shape)
+
+    assert (y_produced == y_expected).all(), "cppsim failed"
+
+    if exec_mode == "rtlsim":
+        hls_synt_res_est = model.analysis(hls_synth_res_estimation)
+        assert "Thresholding_Batch_0" in hls_synt_res_est
diff --git a/tests/transformation/test_general_transformation.py b/tests/transformation/test_general_transformation.py
index 33b6041a170f3c0de8f741ef3ecb28682f6429ea..153af378eb3e07d5824f114fd194730048fb4953 100644
--- a/tests/transformation/test_general_transformation.py
+++ b/tests/transformation/test_general_transformation.py
@@ -31,6 +31,12 @@ from pkgutil import get_data
 from finn.core.modelwrapper import ModelWrapper
 from finn.transformation.general import GiveUniqueNodeNames
 
+import numpy as np
+import onnx
+import finn.core.onnx_exec as oxe
+from finn.transformation.infer_shapes import InferShapes
+from finn.transformation.general import GiveUniqueParameterTensors
+
 
 def test_give_unique_node_names():
     raw_m = get_data("finn", "data/onnx/mnist-conv/model.onnx")
@@ -39,3 +45,76 @@ def test_give_unique_node_names():
     assert model.graph.node[0].name == "Reshape_0"
     assert model.graph.node[1].name == "Conv_0"
     assert model.graph.node[11].name == "Add_2"
+
+
+def test_give_unique_parameter_tensors():
+
+    # Create model
+    input_shape = [4, 4]
+    in1 = onnx.helper.make_tensor_value_info("in1", onnx.TensorProto.FLOAT, input_shape)
+    out1 = onnx.helper.make_tensor_value_info(
+        "out1", onnx.TensorProto.FLOAT, input_shape
+    )
+
+    graph_nodes = []
+    graph_nodes += [
+        onnx.helper.make_node("Add", inputs=["in1", "param1"], outputs=["t1"])
+    ]
+
+    graph_nodes += [
+        onnx.helper.make_node("Sum", inputs=["t1", "param1", "param1"], outputs=["t2"])
+    ]
+
+    graph_nodes += [
+        onnx.helper.make_node("Sum", inputs=["t2", "param2", "param1"], outputs=["t3"])
+    ]
+
+    graph_nodes += [
+        onnx.helper.make_node("Add", inputs=["t3", "param1"], outputs=["out1"])
+    ]
+
+    onnx_graph = onnx.helper.make_graph(
+        nodes=graph_nodes, name="simple_graph", inputs=[in1], outputs=[out1],
+    )
+
+    onnx_model = onnx.helper.make_model(onnx_graph, producer_name="simple-model")
+    model = ModelWrapper(onnx_model)
+
+    # Set param values
+    np.random.seed(0)
+    param1 = np.random.rand(*input_shape).astype(np.float32)
+    param2 = np.random.rand(*input_shape).astype(np.float32)
+    model.set_initializer("param1", param1)
+    model.set_initializer("param2", param2)
+    model = model.transform(InferShapes())
+
+    # Apply transformation
+    new_model = model.transform(GiveUniqueParameterTensors())
+    new_model = new_model.transform(InferShapes())
+
+    # Test
+    # Breaks the model?
+    input_tensor = np.random.rand(*input_shape).astype(np.float32)
+    input_dict = {"in1": input_tensor}
+
+    # run original
+    expected_context = oxe.execute_onnx(model, input_dict)
+    expected_output = expected_context[model.graph.output[0].name]
+
+    # run modified
+    produced_context = oxe.execute_onnx(new_model, input_dict)
+    produced_output = produced_context[new_model.graph.output[0].name]
+
+    assert np.isclose(
+        expected_output, produced_output, atol=1e-8
+    ).all(), " GiveUniqueParameterTensors() transform breaks the model"
+
+    # Does the job?
+    param_set = set()
+    param_cnt = 0
+    for n in new_model.graph.node:
+        for i in range(1, len(n.input)):
+            param_set |= {n.input[i]}
+            param_cnt += 1
+
+    assert len(param_set) == param_cnt, " There are still parameters reused"
diff --git a/tests/transformation/test_infer_data_layouts.py b/tests/transformation/test_infer_data_layouts.py
new file mode 100644
index 0000000000000000000000000000000000000000..fccc7813da6f98c8af4ade7ae562c99b32247a8b
--- /dev/null
+++ b/tests/transformation/test_infer_data_layouts.py
@@ -0,0 +1,113 @@
+# Copyright (c) 2020, Xilinx
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright notice, this
+#   list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright notice,
+#   this list of conditions and the following disclaimer in the documentation
+#   and/or other materials provided with the distribution.
+#
+# * Neither the name of FINN nor the names of its
+#   contributors may be used to endorse or promote products derived from
+#   this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+import os
+
+import brevitas.onnx as bo
+import finn.transformation.streamline.absorb as absorb
+from finn.transformation.streamline.reorder import MakeMaxPoolNHWC
+from finn.core.modelwrapper import ModelWrapper
+from finn.transformation.fold_constants import FoldConstants
+from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames
+from finn.transformation.infer_shapes import InferShapes
+from finn.transformation.streamline import Streamline
+from finn.util.test import get_test_model_trained
+from finn.transformation.double_to_single_float import DoubleToSingleFloat
+from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul
+from finn.transformation.bipolar_to_xnor import ConvertBipolarMatMulToXnorPopcount
+import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
+from finn.transformation.infer_data_layouts import InferDataLayouts
+import finn.core.data_layout as DataLayout
+
+export_onnx_path_cnv = "test_output_cnv.onnx"
+
+
+def test_infer_data_layouts():
+    cnv = get_test_model_trained("CNV", 1, 1)
+    bo.export_finn_onnx(cnv, (1, 3, 32, 32), export_onnx_path_cnv)
+    model = ModelWrapper(export_onnx_path_cnv)
+    model = model.transform(DoubleToSingleFloat())
+    model = model.transform(InferShapes())
+    model = model.transform(FoldConstants())
+    model = model.transform(GiveUniqueNodeNames())
+    model = model.transform(GiveReadableTensorNames())
+    model = model.transform(Streamline())
+    model = model.transform(InferDataLayouts())
+
+    assert model.get_tensor_layout("global_in") == DataLayout.NCHW
+    assert model.get_tensor_layout("Conv_0_out0") == DataLayout.NCHW
+    assert model.get_tensor_layout("MaxPool_0_out0") == DataLayout.NCHW
+    assert model.get_tensor_layout("MultiThreshold_6_out0") == DataLayout.NCHW
+    assert model.get_tensor_layout("Reshape_0_out0") == DataLayout.NC
+    assert model.get_tensor_layout("MatMul_0_out0") == DataLayout.NC
+    assert model.get_tensor_layout("global_out") == DataLayout.NC
+
+    model = model.transform(LowerConvsToMatMul())
+    model = model.transform(MakeMaxPoolNHWC())
+    model = model.transform(GiveUniqueNodeNames())
+    model = model.transform(GiveReadableTensorNames())
+    model = model.transform(InferDataLayouts())
+
+    assert model.get_tensor_layout("global_in") == DataLayout.NCHW
+    assert model.get_tensor_layout("Transpose_0_out0") == DataLayout.NHWC
+    assert model.get_tensor_layout("Im2Col_0_out0") == DataLayout.NHWC
+    # note: im2col output isn't really NHWC or any other common layout
+    # since the concept of channels changes with lowering... but it is
+    # conceptually close to NHWC since the innermost dim gets multiplied
+    assert model.get_tensor_layout("MatMul_0_out0") == DataLayout.NHWC
+    assert model.get_tensor_layout("Transpose_1_out0") == DataLayout.NCHW
+    assert model.get_tensor_layout("Transpose_2_out0") == DataLayout.NHWC
+    assert model.get_tensor_layout("MaxPoolNHWC_0_out0") == DataLayout.NHWC
+    assert model.get_tensor_layout("Reshape_0_out0") == DataLayout.NC
+    assert model.get_tensor_layout("global_out") == DataLayout.NC
+
+    model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
+    model = model.transform(ConvertBipolarMatMulToXnorPopcount())
+    model = model.transform(Streamline())
+    model = model.transform(to_hls.InferBinaryStreamingFCLayer())
+    model = model.transform(to_hls.InferQuantizedStreamingFCLayer())
+    model = model.transform(to_hls.InferConvInpGen())
+    model = model.transform(to_hls.InferStreamingMaxPool())
+    model = model.transform(GiveUniqueNodeNames())
+    model = model.transform(GiveReadableTensorNames())
+    model = model.transform(InferDataLayouts())
+
+    assert model.get_tensor_layout("global_in") == DataLayout.NCHW
+    assert model.get_tensor_layout("Transpose_0_out0") == DataLayout.NHWC
+    # note: im2col output isn't really NHWC or any other common layout
+    # since the concept of channels changes with lowering... but it is
+    # conceptually close to NHWC since the innermost dim gets multiplied
+    assert (
+        model.get_tensor_layout("ConvolutionInputGenerator_0_out0") == DataLayout.NHWC
+    )
+    assert model.get_tensor_layout("StreamingFCLayer_Batch_3_out0") == DataLayout.NHWC
+    assert model.get_tensor_layout("Reshape_0_out0") == DataLayout.NC
+    assert model.get_tensor_layout("StreamingFCLayer_Batch_6_out0") == DataLayout.NC
+    assert model.get_tensor_layout("global_out") == DataLayout.NC
+
+    os.remove(export_onnx_path_cnv)
diff --git a/tests/transformation/test_scalar_past_eltwise.py b/tests/transformation/test_linear_past_eltwise.py
similarity index 69%
rename from tests/transformation/test_scalar_past_eltwise.py
rename to tests/transformation/test_linear_past_eltwise.py
index e845f32176a9293046b297b7d9e2ab64fabc1791..b77f59779a5e8559f80e017d13b66bcb67249830 100644
--- a/tests/transformation/test_scalar_past_eltwise.py
+++ b/tests/transformation/test_linear_past_eltwise.py
@@ -35,7 +35,7 @@ import finn.core.onnx_exec as oxe
 from finn.core.modelwrapper import ModelWrapper
 from finn.transformation.fold_constants import FoldConstants
 from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames
-from finn.transformation.streamline.reorder import MoveScalarLinearPastEltwiseAdd
+from finn.transformation.streamline.reorder import MoveLinearPastEltwiseAdd
 from finn.transformation.infer_shapes import InferShapes
 from finn.transformation.double_to_single_float import DoubleToSingleFloat
 
@@ -95,7 +95,7 @@ def make_model(shape):
 @pytest.mark.parametrize("ch", [64])
 # ifmdim
 @pytest.mark.parametrize("ifmdim", [-1, 7])
-def test_scalar_past_eltwise(ch, ifmdim):
+def test_linear_past_eltwise_add(ch, ifmdim):
     # generate test vectors of correct shape
     if ifmdim == -1:
         input_tensor_shape = (1, ch)
@@ -124,7 +124,7 @@ def test_scalar_past_eltwise(ch, ifmdim):
     assert len(model.get_nodes_by_op_type("Add")) == 3
     assert len(model.get_nodes_by_op_type("Mul")) == 2
 
-    model = model.transform(MoveScalarLinearPastEltwiseAdd())
+    model = model.transform(MoveLinearPastEltwiseAdd())
 
     # verify again, to check we didnt break anything
     output_dict = oxe.execute_onnx(model, input_dict, True)
@@ -134,3 +134,68 @@ def test_scalar_past_eltwise(ch, ifmdim):
     assert len(model.get_nodes_by_op_type("Mul")) == 1
 
     os.remove(export_onnx_path)
+
+
+@pytest.mark.parametrize("ch", [64, 1])
+# ifmdim
+@pytest.mark.parametrize("ifmdim", [-1, 7])
+def test_linear_past_eltwise_add_multiple_forks(ch, ifmdim):
+    # generate test vectors of correct shape
+    if ifmdim == -1:
+        input_shape = (1, ch)
+    else:
+        input_shape = (1, ch, ifmdim, ifmdim)
+
+    top_in = helper.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape)
+    top_out = helper.make_tensor_value_info("top_out", TensorProto.FLOAT, input_shape)
+
+    num_of_params = 6
+    value_info = []
+    for i in range(num_of_params):
+        value_info += [
+            helper.make_tensor_value_info("p" + str(i), TensorProto.FLOAT, input_shape)
+        ]
+
+    modelproto = helper.make_model(
+        helper.make_graph(
+            name="test",
+            inputs=[top_in],
+            outputs=[top_out],
+            value_info=value_info,
+            nodes=[
+                helper.make_node("Add", ["top_in", "p0"], ["fork1"]),
+                helper.make_node("Mul", ["fork1", "p1"], ["t2"]),
+                helper.make_node("Mul", ["fork1", "p2"], ["t3"]),
+                helper.make_node("Add", ["t2", "t3"], ["t4"]),
+                helper.make_node("Mul", ["t4", "p3"], ["fork2"]),
+                helper.make_node("Add", ["fork2", "p4"], ["t5"]),
+                helper.make_node("Add", ["fork2", "p5"], ["t6"]),
+                helper.make_node("Add", ["t5", "t6"], ["top_out"]),
+            ],
+        )
+    )
+    model = ModelWrapper(modelproto)
+    model = model.transform(InferShapes())
+
+    np.random.seed(0)
+    for i in range(num_of_params):
+        model.set_initializer(
+            "p" + str(i), np.random.rand(*input_shape).astype(np.float32)
+        )
+
+    # need equal mults:
+    model.set_initializer("p2", model.get_initializer("p1"))
+
+    # Transform
+    new_model = model.transform(MoveLinearPastEltwiseAdd())
+    inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)}
+
+    # Test
+    assert oxe.compare_execution(model, new_model, inp_dict)
+    assert new_model.graph.node[0].op_type == "Add"
+    assert new_model.graph.node[1].op_type == "Add"
+    assert new_model.graph.node[2].op_type == "Mul"
+    assert new_model.graph.node[3].op_type == "Mul"
+    assert new_model.graph.node[4].op_type == "Add"
+    assert new_model.graph.node[5].op_type == "Add"
+    assert len(new_model.graph.node) == 6
diff --git a/tests/transformation/test_move_add_past_mul.py b/tests/transformation/test_move_add_past_mul.py
index a0516d6fb2ff985fc112185ce99ad8facd841caf..163b9d310a5f12bd0b854f9aa46f53a549bf109e 100644
--- a/tests/transformation/test_move_add_past_mul.py
+++ b/tests/transformation/test_move_add_past_mul.py
@@ -60,6 +60,9 @@ def test_move_add_past_mul_single():
     new_model = model.transform(MoveAddPastMul())
     inp_dict = {"top_in": np.asarray([-1.0, 1.0], dtype=np.float32)}
     assert ox.compare_execution(model, new_model, inp_dict)
+    assert new_model.graph.node[0].op_type == "Mul"
+    assert new_model.graph.node[1].op_type == "Add"
+    assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0]
 
 
 def test_move_add_past_mul_multi():
@@ -92,3 +95,50 @@ def test_move_add_past_mul_multi():
     new_model = model.transform(MoveAddPastMul())
     inp_dict = {"top_in": np.asarray([-1.0, 1.0], dtype=np.float32)}
     assert ox.compare_execution(model, new_model, inp_dict)
+    assert new_model.graph.node[0].op_type == "Mul"
+    assert new_model.graph.node[1].op_type == "Mul"
+    assert new_model.graph.node[2].op_type == "Add"
+    assert new_model.graph.node[3].op_type == "Add"
+    for i in range(len(new_model.graph.node) - 1):
+        assert new_model.graph.node[i].output[0] == new_model.graph.node[i + 1].input[0]
+
+
+def test_move_add_past_mul_only_if_linear():
+    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2])
+    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2])
+
+    value_info = [oh.make_tensor_value_info("add1_param", TensorProto.FLOAT, [1])]
+    value_info += [oh.make_tensor_value_info("mul1_param", TensorProto.FLOAT, [1])]
+    value_info += [oh.make_tensor_value_info("mul2_param", TensorProto.FLOAT, [1])]
+    value_info += [oh.make_tensor_value_info("mul3_param", TensorProto.FLOAT, [1])]
+    modelproto = oh.make_model(
+        oh.make_graph(
+            name="test",
+            inputs=[top_in],
+            outputs=[top_out],
+            value_info=value_info,
+            nodes=[
+                oh.make_node("Add", ["top_in", "add1_param"], ["t1"]),
+                oh.make_node("Mul", ["t1", "mul1_param"], ["fork"]),
+                oh.make_node("Mul", ["fork", "mul2_param"], ["t3"]),
+                oh.make_node("Add", ["t3", "fork"], ["t4"]),
+                oh.make_node("Mul", ["t4", "mul3_param"], ["top_out"]),
+            ],
+        )
+    )
+    model = ModelWrapper(modelproto)
+    model = model.transform(InferShapes())
+
+    np.random.seed(0)
+    model.set_initializer("add1_param", np.random.rand(2).astype(np.float32))
+    model.set_initializer("mul1_param", np.random.rand(2).astype(np.float32))
+    model.set_initializer("mul2_param", np.random.rand(2).astype(np.float32))
+    model.set_initializer("mul3_param", np.random.rand(2).astype(np.float32))
+    new_model = model.transform(MoveAddPastMul())
+    inp_dict = {"top_in": np.random.rand(2).astype(np.float32)}
+    assert ox.compare_execution(model, new_model, inp_dict)
+    assert new_model.graph.node[0].op_type == "Mul"
+    assert new_model.graph.node[1].op_type == "Add"
+    assert new_model.graph.node[2].op_type == "Mul"
+    assert new_model.graph.node[3].op_type == "Add"
+    assert new_model.graph.node[4].op_type == "Mul"
diff --git a/tests/transformation/test_move_scalar_past_conv.py b/tests/transformation/test_move_scalar_past_conv.py
new file mode 100644
index 0000000000000000000000000000000000000000..9992d17b96ab5f419f3ac495f126ddfa736349a2
--- /dev/null
+++ b/tests/transformation/test_move_scalar_past_conv.py
@@ -0,0 +1,87 @@
+import numpy as np
+import onnx.helper as oh
+import pytest
+from onnx import TensorProto
+
+import finn.core.onnx_exec as ox
+from finn.core.modelwrapper import ModelWrapper
+from finn.transformation.infer_shapes import InferShapes
+from finn.transformation.streamline import (
+    MoveScalarAddPastConv,
+    MoveScalarMulPastConv,
+)
+
+
+@pytest.mark.parametrize(
+    "test_args", [("Add", MoveScalarAddPastConv()), ("Mul", MoveScalarMulPastConv())],
+)
+def test_move_scalar_past_conv_only_if_linear(test_args):
+    scalar_op = test_args[0]
+    transf_fxn = test_args[1]
+
+    in_feature_dim = 7
+    in_chn = 1
+    padding = False
+    stages = 3
+    kernel_size = 3
+
+    out_feature_dim = (
+        in_feature_dim if padding else in_feature_dim - (kernel_size // 2 * 2) * stages
+    )
+
+    input_shape = [1, in_chn, in_feature_dim, in_feature_dim]
+    output_shape = [1, in_chn, out_feature_dim, out_feature_dim]
+
+    conv_param_shape = [in_chn, in_chn, kernel_size, kernel_size]
+
+    conv_config = {}
+    conv_config["dilations"] = [1, 1]
+    conv_config["group"] = 1
+    conv_config["kernel_shape"] = [kernel_size, kernel_size]
+    conv_config["pads"] = [0, 0, 0, 0]
+    conv_config["strides"] = [1, 1]
+
+    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape)
+    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, output_shape)
+
+    value_info = [oh.make_tensor_value_info("p1", TensorProto.FLOAT, [1])]
+    value_info += [oh.make_tensor_value_info("p2", TensorProto.FLOAT, conv_param_shape)]
+    value_info += [oh.make_tensor_value_info("p3", TensorProto.FLOAT, conv_param_shape)]
+    value_info += [oh.make_tensor_value_info("p4", TensorProto.FLOAT, conv_param_shape)]
+    value_info += [oh.make_tensor_value_info("p5", TensorProto.FLOAT, conv_param_shape)]
+
+    modelproto = oh.make_model(
+        oh.make_graph(
+            name="test",
+            inputs=[top_in],
+            outputs=[top_out],
+            value_info=value_info,
+            nodes=[
+                oh.make_node("Conv", ["top_in", "p2"], ["t1"], **conv_config),
+                oh.make_node(scalar_op, ["t1", "p1"], ["t2"]),
+                oh.make_node("Conv", ["t2", "p3"], ["t3"], **conv_config),
+                oh.make_node("Conv", ["t2", "p4"], ["t4"], **conv_config),
+                oh.make_node(scalar_op, ["t3", "t4"], ["t5"]),
+                oh.make_node("Conv", ["t5", "p5"], ["top_out"], **conv_config),
+            ],
+        )
+    )
+    model = ModelWrapper(modelproto)
+    model = model.transform(InferShapes())
+
+    np.random.seed(0)
+    model.set_initializer("p1", *np.random.rand(1).astype(np.float32))
+    model.set_initializer("p2", np.random.rand(*conv_param_shape).astype(np.float32))
+    model.set_initializer("p3", np.random.rand(*conv_param_shape).astype(np.float32))
+    model.set_initializer("p4", np.random.rand(*conv_param_shape).astype(np.float32))
+    model.set_initializer("p5", np.random.rand(*conv_param_shape).astype(np.float32))
+    new_model = model.transform(transf_fxn)
+    inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)}
+
+    assert ox.compare_execution(model, new_model, inp_dict)
+    assert new_model.graph.node[0].op_type == "Conv"
+    assert new_model.graph.node[1].op_type == scalar_op
+    assert new_model.graph.node[2].op_type == "Conv"
+    assert new_model.graph.node[3].op_type == "Conv"
+    assert new_model.graph.node[4].op_type == scalar_op
+    assert new_model.graph.node[5].op_type == "Conv"
diff --git a/tests/transformation/test_move_scalar_past_matmul.py b/tests/transformation/test_move_scalar_past_matmul.py
index 896527e82d8cfa869cb979d1102904c70703a14c..e432dbf4ec1a38551609e5914e2d44968a020908 100644
--- a/tests/transformation/test_move_scalar_past_matmul.py
+++ b/tests/transformation/test_move_scalar_past_matmul.py
@@ -27,6 +27,7 @@
 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
 import numpy as np
+import pytest
 import onnx.helper as oh
 from onnx import TensorProto
 
@@ -99,3 +100,56 @@ def test_move_scalar_add_past_matmul():
     assert new_model.graph.node[0].op_type == "MatMul"
     assert new_model.graph.node[1].op_type == "Add"
     assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0]
+
+
+@pytest.mark.parametrize(
+    "test_args",
+    [("Add", MoveScalarAddPastMatMul()), ("Mul", MoveScalarMulPastMatMul())],
+)
+def test_move_scalar_past_matmul_only_if_linear(test_args):
+    scalar_op = test_args[0]
+    transf_fxn = test_args[1]
+    input_shape = [1, 2]
+    matmul_shape = [2, 2]
+    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape)
+    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, input_shape)
+
+    p1 = oh.make_tensor_value_info("p1", TensorProto.FLOAT, [1, 1])
+    p2 = oh.make_tensor_value_info("p2", TensorProto.FLOAT, matmul_shape)
+    p3 = oh.make_tensor_value_info("p3", TensorProto.FLOAT, matmul_shape)
+    p4 = oh.make_tensor_value_info("p4", TensorProto.FLOAT, matmul_shape)
+    modelproto = oh.make_model(
+        oh.make_graph(
+            name="test",
+            inputs=[top_in],
+            outputs=[top_out],
+            value_info=[p1, p2, p3, p4],
+            nodes=[
+                oh.make_node(scalar_op, ["top_in", "p1"], ["t1"]),
+                oh.make_node("MatMul", ["t1", "p2"], ["fork"]),
+                oh.make_node("MatMul", ["fork", "p3"], ["t3"]),
+                oh.make_node(scalar_op, ["t3", "fork"], ["t4"]),
+                oh.make_node("MatMul", ["t4", "p4"], ["top_out"]),
+            ],
+        )
+    )
+    model = ModelWrapper(modelproto)
+    model = model.transform(InferShapes())
+
+    np.random.seed(0)
+    model.set_initializer("p1", np.random.rand(1, 1).astype(np.float32))
+    model.set_initializer("p2", np.random.rand(*matmul_shape).astype(np.float32))
+    model.set_initializer("p3", np.random.rand(*matmul_shape).astype(np.float32))
+    model.set_initializer("p4", np.random.rand(*matmul_shape).astype(np.float32))
+
+    # Transform
+    new_model = model.transform(transf_fxn)
+
+    # Test
+    inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)}
+    assert ox.compare_execution(model, new_model, inp_dict)
+    assert new_model.graph.node[0].op_type == "MatMul"
+    assert new_model.graph.node[1].op_type == scalar_op
+    assert new_model.graph.node[2].op_type == "MatMul"
+    assert new_model.graph.node[3].op_type == scalar_op
+    assert new_model.graph.node[4].op_type == "MatMul"