diff --git a/tests/transformation/test_move_scalar_past_matmul.py b/tests/transformation/test_move_scalar_past_matmul.py
index 896527e82d8cfa869cb979d1102904c70703a14c..e432dbf4ec1a38551609e5914e2d44968a020908 100644
--- a/tests/transformation/test_move_scalar_past_matmul.py
+++ b/tests/transformation/test_move_scalar_past_matmul.py
@@ -27,6 +27,7 @@
 # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
 
 import numpy as np
+import pytest
 import onnx.helper as oh
 from onnx import TensorProto
 
@@ -99,3 +100,56 @@ def test_move_scalar_add_past_matmul():
     assert new_model.graph.node[0].op_type == "MatMul"
     assert new_model.graph.node[1].op_type == "Add"
     assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0]
+
+
+@pytest.mark.parametrize(
+    "test_args",
+    [("Add", MoveScalarAddPastMatMul()), ("Mul", MoveScalarMulPastMatMul())],
+)
+def test_move_scalar_past_matmul_only_if_linear(test_args):
+    scalar_op = test_args[0]
+    transf_fxn = test_args[1]
+    input_shape = [1, 2]
+    matmul_shape = [2, 2]
+    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape)
+    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, input_shape)
+
+    p1 = oh.make_tensor_value_info("p1", TensorProto.FLOAT, [1, 1])
+    p2 = oh.make_tensor_value_info("p2", TensorProto.FLOAT, matmul_shape)
+    p3 = oh.make_tensor_value_info("p3", TensorProto.FLOAT, matmul_shape)
+    p4 = oh.make_tensor_value_info("p4", TensorProto.FLOAT, matmul_shape)
+    modelproto = oh.make_model(
+        oh.make_graph(
+            name="test",
+            inputs=[top_in],
+            outputs=[top_out],
+            value_info=[p1, p2, p3, p4],
+            nodes=[
+                oh.make_node(scalar_op, ["top_in", "p1"], ["t1"]),
+                oh.make_node("MatMul", ["t1", "p2"], ["fork"]),
+                oh.make_node("MatMul", ["fork", "p3"], ["t3"]),
+                oh.make_node(scalar_op, ["t3", "fork"], ["t4"]),
+                oh.make_node("MatMul", ["t4", "p4"], ["top_out"]),
+            ],
+        )
+    )
+    model = ModelWrapper(modelproto)
+    model = model.transform(InferShapes())
+
+    np.random.seed(0)
+    model.set_initializer("p1", np.random.rand(1, 1).astype(np.float32))
+    model.set_initializer("p2", np.random.rand(*matmul_shape).astype(np.float32))
+    model.set_initializer("p3", np.random.rand(*matmul_shape).astype(np.float32))
+    model.set_initializer("p4", np.random.rand(*matmul_shape).astype(np.float32))
+
+    # Transform
+    new_model = model.transform(transf_fxn)
+
+    # Test
+    inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)}
+    assert ox.compare_execution(model, new_model, inp_dict)
+    assert new_model.graph.node[0].op_type == "MatMul"
+    assert new_model.graph.node[1].op_type == scalar_op
+    assert new_model.graph.node[2].op_type == "MatMul"
+    assert new_model.graph.node[3].op_type == scalar_op
+    assert new_model.graph.node[4].op_type == "MatMul"