diff --git a/tests/transformation/test_move_scalar_past_matmul.py b/tests/transformation/test_move_scalar_past_matmul.py index 896527e82d8cfa869cb979d1102904c70703a14c..e432dbf4ec1a38551609e5914e2d44968a020908 100644 --- a/tests/transformation/test_move_scalar_past_matmul.py +++ b/tests/transformation/test_move_scalar_past_matmul.py @@ -27,6 +27,7 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np +import pytest import onnx.helper as oh from onnx import TensorProto @@ -99,3 +100,56 @@ def test_move_scalar_add_past_matmul(): assert new_model.graph.node[0].op_type == "MatMul" assert new_model.graph.node[1].op_type == "Add" assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0] + + +@pytest.mark.parametrize( + "test_args", + [("Add", MoveScalarAddPastMatMul()), ("Mul", MoveScalarMulPastMatMul())], +) +def test_move_scalar_past_matmul_only_if_linear(test_args): + scalar_op = test_args[0] + transf_fxn = test_args[1] + input_shape = [1, 2] + matmul_shape = [2, 2] + top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape) + top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, input_shape) + + p1 = oh.make_tensor_value_info("p1", TensorProto.FLOAT, [1, 1]) + p2 = oh.make_tensor_value_info("p2", TensorProto.FLOAT, matmul_shape) + p3 = oh.make_tensor_value_info("p3", TensorProto.FLOAT, matmul_shape) + p4 = oh.make_tensor_value_info("p4", TensorProto.FLOAT, matmul_shape) + modelproto = oh.make_model( + oh.make_graph( + name="test", + inputs=[top_in], + outputs=[top_out], + value_info=[p1, p2, p3, p4], + nodes=[ + oh.make_node(scalar_op, ["top_in", "p1"], ["t1"]), + oh.make_node("MatMul", ["t1", "p2"], ["fork"]), + oh.make_node("MatMul", ["fork", "p3"], ["t3"]), + oh.make_node(scalar_op, ["t3", "fork"], ["t4"]), + oh.make_node("MatMul", ["t4", "p4"], ["top_out"]), + ], + ) + ) + model = ModelWrapper(modelproto) + model = model.transform(InferShapes()) + + np.random.seed(0) + model.set_initializer("p1", np.random.rand(1, 1).astype(np.float32)) + model.set_initializer("p2", np.random.rand(*matmul_shape).astype(np.float32)) + model.set_initializer("p3", np.random.rand(*matmul_shape).astype(np.float32)) + model.set_initializer("p4", np.random.rand(*matmul_shape).astype(np.float32)) + + # Transform + new_model = model.transform(transf_fxn) + + # Test + inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)} + assert ox.compare_execution(model, new_model, inp_dict) + assert new_model.graph.node[0].op_type == "MatMul" + assert new_model.graph.node[1].op_type == scalar_op + assert new_model.graph.node[2].op_type == "MatMul" + assert new_model.graph.node[3].op_type == scalar_op + assert new_model.graph.node[4].op_type == "MatMul"