From 80e3d258f19961a0c228189e2163d8fcc2ba988a Mon Sep 17 00:00:00 2001 From: auphelia <jakobapk@web.de> Date: Wed, 27 May 2020 16:16:18 +0100 Subject: [PATCH] [Transformation] Change creation of sparse matrix for lowering dw conv to matmul --- .../transformation/lower_convs_to_matmul.py | 49 ++++++------------- 1 file changed, 16 insertions(+), 33 deletions(-) diff --git a/src/finn/transformation/lower_convs_to_matmul.py b/src/finn/transformation/lower_convs_to_matmul.py index 4770b90da..b2831a319 100644 --- a/src/finn/transformation/lower_convs_to_matmul.py +++ b/src/finn/transformation/lower_convs_to_matmul.py @@ -27,7 +27,6 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np -from scipy import sparse from onnx import TensorProto from onnx import helper @@ -64,39 +63,23 @@ class LowerConvsToMatMul(Transformation): ifm_dim = model.get_tensor_shape(n.input[0])[-1] # assume NCHW ofm_dim = model.get_tensor_shape(n.output[0])[-1] # assume NCHW - if group == 1: - # reuse conv weights for new matmul weights - # conv weights are [OFM][IFM][k][k] - # first convert to [OFM][k][k][IFM] (to remain compatible with - # finn-hlslib and how it does im2col/sliding window) - W_matmul = W_conv.transpose(0, 2, 3, 1) - # reshape into [OFM][k*k*IFM] matrix - W_matmul = W_matmul.reshape(ofm_ch, ifm_ch * k * k) - # transpose to get ONNX-compatible [k*k*IFM][OFM] matrix - W_matmul = W_matmul.T - model.set_initializer(weight_name, W_matmul) - elif group == ifm_ch and ofm_ch == ifm_ch: - W_matmul = W_conv.transpose(0, 2, 3, 1) - # reshape into [OFM][k*k*IFM] matrix - W_matmul = W_matmul.reshape(ofm_ch, 1 * k * k) - # transpose to get ONNX-compatible [1*k*k][OFM] matrix - W_matmul = W_matmul.T - # create sparse matrix with shape [k*k*IFM][OFM] - inds = [] - for i in range(k * k): - for ch in range(ifm_ch): - inds.append(ch) - inds = np.array(inds) - index = np.arange(len(W_matmul.flatten())) - W_sparse = sparse.csc_matrix( - (W_matmul.flatten(), (inds, index)), - shape=(ofm_ch, ifm_ch * k * k), - ) - W_sparse = W_sparse.toarray().T - model.set_initializer(weight_name, W_sparse) + # if depthwise conv create sparse matrix + if group == ifm_ch and ofm_ch == ifm_ch: + W_sparse = np.zeros((ofm_ch, ifm_ch, k, k)) + for ch in range(ifm_ch): + W_sparse[ch][ch] = W_conv[ch][0] + W_conv = W_sparse.astype(np.float32) - else: - raise Exception("Settings for convolution layer not yet supported.") + # reuse conv weights for new matmul weights + # conv weights are [OFM][IFM][k][k] + # first convert to [OFM][k][k][IFM] (to remain compatible with + # finn-hlslib and how it does im2col/sliding window) + W_matmul = W_conv.transpose(0, 2, 3, 1) + # reshape into [OFM][k*k*IFM] matrix + W_matmul = W_matmul.reshape(ofm_ch, ifm_ch * k * k) + # transpose to get ONNX-compatible [k*k*IFM][OFM] matrix + W_matmul = W_matmul.T + model.set_initializer(weight_name, W_matmul) # create new intermediate values inp_trans_out = helper.make_tensor_value_info( -- GitLab