diff --git a/tests/transformation/test_conv_lowering.py b/tests/transformation/test_conv_lowering.py
deleted file mode 100644
index 9cfc45d0b99ca6cf3e2a4b68bdde98dfaf77c9ed..0000000000000000000000000000000000000000
--- a/tests/transformation/test_conv_lowering.py
+++ /dev/null
@@ -1,189 +0,0 @@
-# Copyright (c) 2020, Xilinx
-# All rights reserved.
-#
-# Redistribution and use in source and binary forms, with or without
-# modification, are permitted provided that the following conditions are met:
-#
-# * Redistributions of source code must retain the above copyright notice, this
-#   list of conditions and the following disclaimer.
-#
-# * Redistributions in binary form must reproduce the above copyright notice,
-#   this list of conditions and the following disclaimer in the documentation
-#   and/or other materials provided with the distribution.
-#
-# * Neither the name of FINN nor the names of its
-#   contributors may be used to endorse or promote products derived from
-#   this software without specific prior written permission.
-#
-# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
-# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
-# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
-# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
-# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
-# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
-# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
-# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
-# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
-# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
-
-import pytest
-import onnx.helper as oh
-from onnx import TensorProto
-import os
-import pkg_resources as pk
-import brevitas.onnx as bo
-import numpy as np
-
-from finn.core.modelwrapper import ModelWrapper
-from finn.core.datatype import DataType
-from finn.transformation.fold_constants import FoldConstants
-from finn.transformation.infer_shapes import InferShapes
-from finn.util.test import get_test_model_trained
-from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul
-import finn.core.onnx_exec as oxe
-from finn.custom_op.im2col import compute_conv_output_dim
-from finn.util.basic import gen_finn_dt_tensor
-from finn.custom_op.registry import getCustomOp
-
-export_onnx_path = "test_conv_lowering.onnx"
-
-
-def test_conv_lowering_cnv_w1a1():
-    cnv = get_test_model_trained("CNV", 1, 1)
-    bo.export_finn_onnx(cnv, (1, 3, 32, 32), export_onnx_path)
-    model = ModelWrapper(export_onnx_path)
-    model = model.transform(InferShapes())
-    model = model.transform(FoldConstants())
-    fn = pk.resource_filename("finn.qnn-data", "cifar10/cifar10-test-data-class3.npz")
-    input_tensor = np.load(fn)["arr_0"].astype(np.float32)
-    input_tensor = input_tensor / 255
-    assert input_tensor.shape == (1, 3, 32, 32)
-    # execute imported model to get expected answer
-    input_dict = {"0": input_tensor}
-    output_dict_e = oxe.execute_onnx(model, input_dict)
-    expected = output_dict_e[list(output_dict_e.keys())[0]]
-    # execute transformed model and compare
-    model = model.transform(LowerConvsToMatMul())
-    output_dict_p = oxe.execute_onnx(model, input_dict)
-    produced = output_dict_p[list(output_dict_p.keys())[0]]
-    assert np.isclose(produced, expected).all()
-    assert np.argmax(produced) == 3
-    os.remove(export_onnx_path)
-
-
-# input datatype
-@pytest.mark.parametrize("idt", [DataType.INT2, DataType.INT4])
-# kernel size
-@pytest.mark.parametrize("k", [2, 4])
-# input dimension
-@pytest.mark.parametrize("ifm_dim", [4, 6])
-# input channels
-@pytest.mark.parametrize("ifm_ch", [2, 3])
-# stride
-@pytest.mark.parametrize("stride", [1, 2])
-# padding
-@pytest.mark.parametrize("padding", [[0, 0, 0, 0], [1, 1, 1, 1]])
-def test_depthwise_conv_lowering(idt, k, ifm_dim, ifm_ch, stride, padding):
-    wdt = idt
-    odt = DataType.INT32
-    ofm_ch = ifm_ch
-    ofm_dim = compute_conv_output_dim(ifm_dim, k, stride, pad=padding[0])
-
-    # set up onnx model
-    inp = oh.make_tensor_value_info(
-        "inp", TensorProto.FLOAT, [1, ifm_ch, ifm_dim, ifm_dim]
-    )
-    outp = oh.make_tensor_value_info(
-        "outp", TensorProto.FLOAT, [1, ofm_ch, ofm_dim, ofm_dim]
-    )
-
-    W = oh.make_tensor_value_info("W", TensorProto.FLOAT, [ofm_ch, 1, k, k])
-
-    dw_cnv = oh.make_node(
-        "Conv",
-        inputs=["inp", "W"],
-        outputs=["outp"],
-        kernel_shape=[k, k],
-        pads=padding,
-        strides=[stride, stride],
-        group=ifm_ch,
-    )
-    graph = oh.make_graph(
-        nodes=[dw_cnv],
-        name="dw_cnv_graph",
-        inputs=[inp],
-        outputs=[outp],
-        value_info=[W],
-    )
-
-    model = oh.make_model(graph, producer_name="dws_cnv-model")
-    model = ModelWrapper(model)
-    model.set_tensor_datatype("inp", idt)
-    model.set_tensor_datatype("outp", odt)
-    model.set_tensor_datatype("W", wdt)
-    w_tensor = gen_finn_dt_tensor(wdt, [ofm_ch, 1, k, k])
-    model.set_initializer("W", w_tensor)
-    model = model.transform(InferShapes())
-
-    input_tensor = gen_finn_dt_tensor(idt, [1, ifm_ch, ifm_dim, ifm_dim])
-    input_dict = {"inp": input_tensor}
-    output_dict = oxe.execute_onnx(model, input_dict)
-    expected = output_dict["outp"]
-
-    model = model.transform(LowerConvsToMatMul())
-    output_dict = oxe.execute_onnx(model, input_dict)
-    produced = output_dict["outp"]
-    assert (produced == expected).all()
-
-    # check if created nodes have attributes that indicate depthwise conv
-    assert model.get_tensor_sparsity("W") is not None
-    im2col_node = getCustomOp(model.graph.node[1])
-    assert im2col_node.get_nodeattr("depthwise") == 1
-
-
-def test_conv_lowering_conv_1x1():
-    np.random.seed(0)
-
-    in_feature_dim = 7
-    in_chn = 3
-    kernel_size = 1
-    out_feature_dim = in_feature_dim
-
-    input_shape = [1, in_chn, in_feature_dim, in_feature_dim]
-    output_shape = [1, in_chn, out_feature_dim, out_feature_dim]
-
-    conv_param_shape = [in_chn, in_chn, kernel_size, kernel_size]
-
-    conv_config = {}
-    conv_config["dilations"] = [1, 1]
-    conv_config["group"] = 1
-    conv_config["kernel_shape"] = [kernel_size, kernel_size]
-    conv_config["pads"] = [0, 0, 0, 0]
-    conv_config["strides"] = [1, 1]
-
-    top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape)
-    top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, output_shape)
-
-    value_info = [oh.make_tensor_value_info("p1", TensorProto.FLOAT, conv_param_shape)]
-
-    modelproto = oh.make_model(
-        oh.make_graph(
-            name="test",
-            inputs=[top_in],
-            outputs=[top_out],
-            value_info=value_info,
-            nodes=[oh.make_node("Conv", ["top_in", "p1"], ["top_out"], **conv_config)],
-        )
-    )
-    model = ModelWrapper(modelproto)
-    model = model.transform(InferShapes())
-    model.set_initializer("p1", np.random.rand(*conv_param_shape).astype(np.float32))
-
-    new_model = model.transform(LowerConvsToMatMul())
-    inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)}
-
-    assert oxe.compare_execution(model, new_model, inp_dict)
-    assert new_model.graph.node[0].op_type == "Transpose"
-    assert new_model.graph.node[1].op_type == "MatMul"
-    assert new_model.graph.node[2].op_type == "Transpose"
-    assert len(new_model.graph.node) == 3
diff --git a/tests/transformation/test_topk_insert.py b/tests/transformation/test_topk_insert.py
deleted file mode 100644
index bed9372dbe3b549bccf70e1f1815019c5d37979e..0000000000000000000000000000000000000000
--- a/tests/transformation/test_topk_insert.py
+++ /dev/null
@@ -1,60 +0,0 @@
-import os
-import onnx
-from finn.util.test import get_test_model_trained
-import brevitas.onnx as bo
-import numpy as np
-import onnx.numpy_helper as nph
-import torch
-
-from finn.core.modelwrapper import ModelWrapper
-from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames
-from finn.transformation.infer_shapes import InferShapes
-from finn.transformation.infer_datatypes import InferDataTypes
-from finn.transformation.fold_constants import FoldConstants
-from finn.transformation.insert_topk import InsertTopK
-
-import finn.core.onnx_exec as oxe
-from pkgutil import get_data
-
-import pytest
-
-export_onnx_path = "test_topk_insert.onnx"
-
-
-@pytest.mark.parametrize("k", [1, 2])
-def test_topk_insert(k):
-    tfc = get_test_model_trained("TFC", 1, 1)
-    bo.export_finn_onnx(tfc, (1, 1, 28, 28), export_onnx_path)
-    model = ModelWrapper(export_onnx_path)
-
-    # do transformations (no topk)
-    model = model.transform(InferShapes())
-    model = model.transform(FoldConstants())
-    model = model.transform(GiveUniqueNodeNames())
-    model = model.transform(GiveReadableTensorNames())
-    model = model.transform(InferDataTypes())
-
-    # verification: generate random input, run through net, streamline,
-    # run again, check that output is top-k
-    raw_i = get_data("finn.base-data", "onnx/mnist-conv/test_data_set_0/input_0.pb")
-    input_tensor = onnx.load_tensor_from_string(raw_i)
-    input_brevitas = torch.from_numpy(nph.to_array(input_tensor)).float()
-    output_golden = tfc.forward(input_brevitas).detach().numpy()
-    output_golden_topk = np.flip(output_golden.flatten().argsort())[:k]
-    output_golden_topk = output_golden_topk.flatten()
-
-    input_dict = {"global_in": nph.to_array(input_tensor)}
-
-    # insert top-k
-    model = model.transform(InsertTopK(k))
-    model = model.transform(GiveUniqueNodeNames())
-    model = model.transform(GiveReadableTensorNames())
-    model = model.transform(InferShapes())
-
-    # verify output of top-k
-    output_dict_topk = oxe.execute_onnx(model, input_dict)
-    output_pysim_topk = output_dict_topk[list(output_dict_topk.keys())[0]]
-    output_pysim_topk = output_pysim_topk.astype(np.int).flatten()
-
-    assert np.array_equal(output_golden_topk, output_pysim_topk)
-    os.remove(export_onnx_path)