From 6ec329d65a050396b29fe11fbc12681ecf3f74cb Mon Sep 17 00:00:00 2001 From: Hendrik Borras <hendrikborras@web.de> Date: Fri, 15 Oct 2021 14:25:00 +0100 Subject: [PATCH] Added QONNX_export test to test_brevitas_QConv2d test. --- tests/brevitas/test_brevitas_QConv2d.py | 16 ++++++++++++++-- 1 file changed, 14 insertions(+), 2 deletions(-) diff --git a/tests/brevitas/test_brevitas_QConv2d.py b/tests/brevitas/test_brevitas_QConv2d.py index c1f790946..9d042b85d 100644 --- a/tests/brevitas/test_brevitas_QConv2d.py +++ b/tests/brevitas/test_brevitas_QConv2d.py @@ -36,12 +36,15 @@ from brevitas.core.quant import QuantType from brevitas.core.restrict_val import RestrictValueType from brevitas.core.scaling import ScalingImplType from brevitas.core.stats import StatsOp +from brevitas.export.onnx.generic.manager import BrevitasONNXManager from brevitas.nn import QuantConv2d +from qonnx.util.cleanup import cleanup as qonnx_cleanup import finn.core.onnx_exec as oxe from finn.core.datatype import DataType from finn.core.modelwrapper import ModelWrapper from finn.transformation.infer_shapes import InferShapes +from finn.transformation.qonnx.convert_qonnx_to_finn import ConvertQONNXtoFINN from finn.util.basic import gen_finn_dt_tensor export_onnx_path = "test_brevitas_conv.onnx" @@ -50,7 +53,8 @@ export_onnx_path = "test_brevitas_conv.onnx" @pytest.mark.parametrize("dw", [False, True]) @pytest.mark.parametrize("bias", [True, False]) @pytest.mark.parametrize("in_channels", [32]) -def test_brevitas_QConv2d(dw, bias, in_channels): +@pytest.mark.parametrize("QONNX_export", [False, True]) +def test_brevitas_QConv2d(dw, bias, in_channels, QONNX_export): ishape = (1, 32, 111, 111) if dw is True: groups = in_channels @@ -89,7 +93,15 @@ def test_brevitas_QConv2d(dw, bias, in_channels): weight_tensor = gen_finn_dt_tensor(DataType.INT4, w_shape) b_conv.weight = torch.nn.Parameter(torch.from_numpy(weight_tensor).float()) b_conv.eval() - bo.export_finn_onnx(b_conv, ishape, export_onnx_path) + if QONNX_export: + m_path = export_onnx_path + BrevitasONNXManager.export(b_conv, ishape, m_path) + qonnx_cleanup(m_path, out_file=m_path) + model = ModelWrapper(m_path) + model = model.transform(ConvertQONNXtoFINN()) + model.save(m_path) + else: + bo.export_finn_onnx(b_conv, ishape, export_onnx_path) model = ModelWrapper(export_onnx_path) model = model.transform(InferShapes()) inp_tensor = np.random.uniform(low=-1.0, high=1.0, size=ishape).astype(np.float32) -- GitLab