From 64863a7d4b10c066cca4dfd9497ad140022c9948 Mon Sep 17 00:00:00 2001
From: auphelia <jakobapk@web.de>
Date: Wed, 4 Dec 2019 13:18:57 +0000
Subject: [PATCH] [notebook - analysis passes]Commit of current work status

---
 ...INN-ModelWrapperAndHowToAnalysisPass.ipynb | 20 +++++++++++++++++--
 1 file changed, 18 insertions(+), 2 deletions(-)

diff --git a/notebooks/FINN-ModelWrapperAndHowToAnalysisPass.ipynb b/notebooks/FINN-ModelWrapperAndHowToAnalysisPass.ipynb
index ab447ca82..9b53380c4 100644
--- a/notebooks/FINN-ModelWrapperAndHowToAnalysisPass.ipynb
+++ b/notebooks/FINN-ModelWrapperAndHowToAnalysisPass.ipynb
@@ -5,7 +5,23 @@
    "metadata": {},
    "source": [
     "# FINN - ModelWrapper and Analysis passes\n",
-    "--------------------------------------\n",
+    "--------------------------------------"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "##ModelWrapper\n",
+    "-------------------------\n"
+   ]
+  },
+  {
+   "cell_type": "markdown",
+   "metadata": {},
+   "source": [
+    "## Analysis passes\n",
+    "-------------------------\n",
     "* <font size=\"3\">traverses the graph structure and produces information about certain properties</font>\n",
     "* <font size=\"3\">input: ModelWrapper</font>\n",
     "* <font size=\"3\">returns dictionary of named properties that the analysis extracts</font>"
@@ -15,7 +31,7 @@
    "cell_type": "markdown",
    "metadata": {},
    "source": [
-    "## Example - Quantity analysis of nodes in onnx graph\n",
+    "### Example - Quantity analysis of nodes in onnx graph\n",
     "----------------------------------------------------------------------\n",
     "<font size=\"3\">Purpose of this analysis pass is to return the number of similar nodes in a dictionary. So first an onnx model is loaded. In this example a trained brevitas model is used. It was exported from brevitas and saved as .onnx file. With the help of `import onnx` the load function can be accessed. As argument it takes the model path.</font>\n"
    ]
-- 
GitLab