diff --git a/tests/fpgadataflow/test_fpgadataflow_channelwise_ops.py b/tests/fpgadataflow/test_fpgadataflow_channelwise_ops.py index d1789c7af693cf99f6a3e60b01253c7dcab25297..2ed352e28981552b186bb778b94dcbc07471e14b 100644 --- a/tests/fpgadataflow/test_fpgadataflow_channelwise_ops.py +++ b/tests/fpgadataflow/test_fpgadataflow_channelwise_ops.py @@ -48,7 +48,7 @@ from finn.transformation.fpgadataflow.replace_verilog_relpaths import ( ) -def make_modelwrapper(C, pe, idt, odt, func, vecs): +def make_modelwrapper(C, pe, idt, odt, pdt, func, vecs): NumChannels = C.shape[0] inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, vecs + [NumChannels]) @@ -69,6 +69,7 @@ def make_modelwrapper(C, pe, idt, odt, func, vecs): PE=pe, inputDataType=idt.name, outputDataType=odt.name, + paramDataType=pdt.name, numInputVectors=vecs, ) graph = helper.make_graph(nodes=[node], name="graph", inputs=[inp], outputs=[outp]) @@ -88,6 +89,8 @@ def make_modelwrapper(C, pe, idt, odt, func, vecs): @pytest.mark.parametrize("act", [DataType.INT8]) # input datatype @pytest.mark.parametrize("idt", [DataType.INT4]) +# param datatype +@pytest.mark.parametrize("pdt", [DataType.INT4]) # folding, -1 is maximum possible @pytest.mark.parametrize("nf", [-1, 2]) # number of input features @@ -100,19 +103,20 @@ def make_modelwrapper(C, pe, idt, odt, func, vecs): @pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) @pytest.mark.vivado @pytest.mark.slow -def test_fpgadataflow_channelwise_ops(idt, act, nf, ich, func, vecs, exec_mode): +def test_fpgadataflow_channelwise_ops(idt, act, pdt, nf, ich, func, vecs, exec_mode): if nf == -1: nf = ich pe = ich // nf assert ich % pe == 0 - # generate input data + # generate input and param data x = gen_finn_dt_tensor(idt, tuple(vecs + [ich])) + # C = np.random.randint(idt.min(), idt.max() + 1, ich).astype(np.float32) + C = gen_finn_dt_tensor(pdt, (ich)) odt = act - C = np.random.randint(idt.min(), idt.max() + 1, ich).astype(np.float32) - model = make_modelwrapper(C, pe, idt, odt, func, vecs) + model = make_modelwrapper(C, pe, idt, odt, pdt, func, vecs) if exec_mode == "cppsim": model = model.transform(PrepareCppSim())