diff --git a/src/finn/core/modelwrapper.py b/src/finn/core/modelwrapper.py index 3ddcaa03c3d62daaf1ffd9f5ae6c3857460994fc..e99a6ef4cd40d6323d77354d3c9b4be341d7649c 100644 --- a/src/finn/core/modelwrapper.py +++ b/src/finn/core/modelwrapper.py @@ -253,14 +253,12 @@ class ModelWrapper: return None def find_producer(self, tensor_name): - """Finds and returns the node that produces the tensor with given name. - Currently only works for linear graphs.""" - all_outputs = [x.output[0] for x in self._model_proto.graph.node] - try: - producer_ind = all_outputs.index(tensor_name) - return self._model_proto.graph.node[producer_ind] - except ValueError: - return None + """Finds and returns the node that produces the tensor with given name.""" + ret = None + for x in self._model_proto.graph.node: + if tensor_name in x.output: + ret = x + return ret def find_upstream(self, tensor_name, finder_fxn): """Follow the producer chain upstream, calling finder_fxn on each upstream diff --git a/src/finn/core/onnx_exec.py b/src/finn/core/onnx_exec.py index 0f47a9104e3d2ef3ee06ef908e302344d78e0b17..172ba25b223fd087df134add460a42d0a9935e0e 100644 --- a/src/finn/core/onnx_exec.py +++ b/src/finn/core/onnx_exec.py @@ -61,6 +61,10 @@ def execute_node(node, context, graph): # onnxruntime unfortunately does not implement run_node as defined by ONNX, # it can only execute entire models -- so we create a model which solely # consists of our current node. + # note: ensure that the same ValueInfo does not appear both in + # graph.value_info as well as graph.output or graph.input + # nodes with multiple outputs that are a mix of value_info and + # input/outputs may get them reordered below node_inputs = list(filter(lambda x: x.name in node.input, graph.input)) node_inputs += list( filter(lambda x: x.name in node.input, graph.value_info) @@ -84,17 +88,25 @@ def execute_node(node, context, graph): output_list = sess.run(None, input_dict) for output_ind in range(len(node.output)): + # get the name of the target buffer from node.output outp = node.output[output_ind] - if output_list[output_ind].shape != context[outp].shape: + + # retrieve the index of that name in node_outputs + for i in range(len(node_outputs)): + if outp == node_outputs[i].name: + list_ind = i + + # use that index to index output_list + if output_list[list_ind].shape != context[outp].shape: raise Exception( """Output shapes disagree after node execution: found %s vs expected %s""" % ( - str(output_list[output_ind].shape.shape), + str(output_list[list_ind].shape.shape), str(context[outp].shape), ) ) - context[outp] = output_list[output_ind] + context[outp] = output_list[list_ind] def execute_onnx(model, input_dict, return_full_exec_context=False): diff --git a/src/finn/transformation/insert_topk.py b/src/finn/transformation/insert_topk.py new file mode 100644 index 0000000000000000000000000000000000000000..213d2cedf92c0276e33fcf2b50e6966aeee8c847 --- /dev/null +++ b/src/finn/transformation/insert_topk.py @@ -0,0 +1,96 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import numpy as np + +from onnx import TensorProto +from onnx import helper as oh + +from finn.transformation import Transformation +from finn.core.datatype import DataType + + +class InsertTopK(Transformation): + """Add TopK node at the network output and replace the graph output with + the TopK indices.""" + + def __init__(self, k=5, axis=-1, largest=1, sorted=1): + super().__init__() + self.k = k + self.axis = axis + self.largest = largest + self.sorted = sorted + + def apply(self, model): + # get name of output tensor + graph_out_name = model.graph.output[0].name + # find final node + final_node = model.find_producer(graph_out_name) + # if a top-select op is already present, do nothing + if final_node.op_type == "TopK": + return (model, False) + else: + out_shape = model.get_tensor_shape(graph_out_name) + out_dtype = model.get_tensor_datatype(graph_out_name) + # adjust shape + out_shape[self.axis] = self.k + # make new buffer + k_tensor = np.array([self.k]).astype(np.int64) + k_value = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.INT64, [1] + ) + topk_values = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.FLOAT, out_shape + ) + topk_indices = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.INT64, out_shape + ) + model.graph.value_info.append(k_value) + model.set_tensor_datatype(k_value.name, out_dtype) # TODO set to int64 + model.graph.value_info.append(topk_values) + model.set_tensor_datatype(topk_values.name, out_dtype) + # create and append topk node + model.set_initializer(k_value.name, k_tensor) + topk_node = oh.make_node( + "TopK", + inputs=[graph_out_name, k_value.name], + outputs=[topk_values.name, topk_indices.name], + axis=self.axis, + largest=self.largest, + sorted=self.sorted, + ) + model.graph.node.append(topk_node) + # replace the existing output definition with topk indices + model.graph.output.insert(0, topk_indices) + model.graph.output.pop(1) + # set quantization annotation for indices + # minimal output dtype for TopK indices dependens on num. classes + # assuming UINT32 is large enough for now (FINN has currently no + # DataType.INT64) + model.set_tensor_datatype(topk_indices.name, DataType.UINT32) + return (model, True) diff --git a/tests/transformation/test_topk_insert.py b/tests/transformation/test_topk_insert.py new file mode 100644 index 0000000000000000000000000000000000000000..ac32c30edbbf466b2b441bcc92975a7d50f42bda --- /dev/null +++ b/tests/transformation/test_topk_insert.py @@ -0,0 +1,58 @@ +import onnx +from finn.util.test import get_test_model_trained +import brevitas.onnx as bo +import numpy as np +import onnx.numpy_helper as nph +import torch + +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_datatypes import InferDataTypes +from finn.transformation.fold_constants import FoldConstants +from finn.transformation.insert_topk import InsertTopK + +import finn.core.onnx_exec as oxe +from pkgutil import get_data + +import pytest + +export_onnx_path = "test_output_lfc.onnx" + + +@pytest.mark.parametrize("k", [1, 5, 10]) +def test_topk_insert(k): + tfc = get_test_model_trained("TFC", 1, 1) + bo.export_finn_onnx(tfc, (1, 1, 28, 28), export_onnx_path) + model = ModelWrapper(export_onnx_path) + + # do transformations (no topk) + model = model.transform(InferShapes()) + model = model.transform(FoldConstants()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(InferDataTypes()) + + # verification: generate random input, run through net, streamline, + # run again, check that output is top-k + raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb") + input_tensor = onnx.load_tensor_from_string(raw_i) + input_brevitas = torch.from_numpy(nph.to_array(input_tensor)).float() + output_golden = tfc.forward(input_brevitas).detach().numpy() + output_golden_topk = np.flip(output_golden.flatten().argsort())[:k] + output_golden_topk = output_golden_topk.flatten() + + input_dict = {"global_in": nph.to_array(input_tensor)} + + # insert top-k + model = model.transform(InsertTopK(k)) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(InferShapes()) + + # verify output of top-k + output_dict_topk = oxe.execute_onnx(model, input_dict) + output_pysim_topk = output_dict_topk[list(output_dict_topk.keys())[0]] + output_pysim_topk = output_pysim_topk.astype(np.int).flatten() + + assert np.array_equal(output_golden_topk, output_pysim_topk)