diff --git a/src/finn/core/rtlsim_exec.py b/src/finn/core/rtlsim_exec.py index ad44dab578b396c80af35af2ede031baca798150..1e1bee3aa7435d5cab6cbf5ea23dd37dcdfa4380 100644 --- a/src/finn/core/rtlsim_exec.py +++ b/src/finn/core/rtlsim_exec.py @@ -66,6 +66,11 @@ def rtlsim_exec(model, execution_context): i_stream_w = first_node.get_instream_width() # convert input into time multiplexed shape i_folded_shape = first_node.get_folded_input_shape() + batchsize = i_tensor.shape[0] + # override batch size for input + i_folded_shape = list(i_folded_shape) + i_folded_shape[0] = batchsize + i_folded_shape = tuple(i_folded_shape) # TODO any other layout transformations need to happen here! i_tensor = i_tensor.reshape(i_folded_shape) # extract output shape @@ -74,12 +79,20 @@ def rtlsim_exec(model, execution_context): o_dt = model.get_tensor_datatype(o_name) last_node = getCustomOp(model.find_producer(o_name)) o_folded_shape = last_node.get_folded_output_shape() + # override batch size from actual input + o_shape = list(o_shape) + o_shape[0] = batchsize + o_shape = tuple(o_shape) + o_folded_shape = list(o_folded_shape) + o_folded_shape[0] = batchsize + o_folded_shape = tuple(o_folded_shape) o_stream_w = last_node.get_outstream_width() packedBits = o_stream_w targetBits = o_dt.bitwidth() # pack input packed_input = npy_to_rtlsim_input(i_tensor, i_dt, i_stream_w) num_out_values = last_node.get_number_output_values() + num_out_values *= batchsize # prepare pyverilator model rtlsim_so = model.get_metadata_prop("rtlsim_so") if (rtlsim_so is None) or (not os.path.isfile(rtlsim_so)): diff --git a/src/finn/core/throughput_test.py b/src/finn/core/throughput_test.py index 8d3dabcf8af51327d5d951464c6d9b36e2f67497..4444e7584f843cd0edb016b520d01d71e659b904 100644 --- a/src/finn/core/throughput_test.py +++ b/src/finn/core/throughput_test.py @@ -28,6 +28,10 @@ import os import subprocess +import numpy as np + +from finn.util.basic import gen_finn_dt_tensor +from finn.core.rtlsim_exec import rtlsim_exec def throughput_test(model, batchsize=1000): @@ -88,3 +92,50 @@ def throughput_test(model, batchsize=1000): return res except FileNotFoundError: return None + + +def throughput_test_rtlsim(model, batchsize=100): + """Runs a throughput test for the given IP-stitched model. When combined + with tracing, useful to determine bottlenecks and required FIFO sizes.""" + + assert ( + model.get_metadata_prop("exec_mode") == "rtlsim" + ), """Top-level exec_mode + metadata_prop must be set to rtlsim""" + + # create random input + iname = model.graph.input[0].name + ishape = model.get_tensor_shape(iname) + ishape_batch = ishape + ishape_batch[0] = batchsize + idt = model.get_tensor_datatype(iname) + dummy_input = gen_finn_dt_tensor(idt, ishape_batch) + # compute input/output sizes + oname = model.graph.output[0].name + oshape = model.get_tensor_shape(oname) + oshape_batch = oshape + oshape_batch[0] = batchsize + odt = model.get_tensor_datatype(oname) + i_bytes = (np.prod(ishape_batch) * idt.bitwidth()) / 8 + o_bytes = (np.prod(oshape_batch) * odt.bitwidth()) / 8 + # make empty exec context and insert input + ctx = model.make_empty_exec_context() + ctx[iname] = dummy_input + # remove liveness threshold, launch rtlsim + os.environ["LIVENESS_THRESHOLD"] = "-1" + rtlsim_exec(model, ctx) + # extract metrics + cycles = int(model.get_metadata_prop("sim_cycles")) + clk_ns = float(model.get_metadata_prop("clk_ns")) + fclk_mhz = 1 / (clk_ns * 0.001) + runtime_s = (cycles * clk_ns) * (10 ** -9) + res = dict() + res["cycles"] = cycles + res["runtime[ms]"] = runtime_s * 1000 + res["throughput[images/s]"] = batchsize / runtime_s + res["DRAM_in_bandwidth[Mb/s]"] = i_bytes * 0.000001 / runtime_s + res["DRAM_out_bandwidth[Mb/s]"] = o_bytes * 0.000001 / runtime_s + res["fclk[mhz]"] = fclk_mhz + res["N"] = batchsize + + return res diff --git a/src/finn/util/basic.py b/src/finn/util/basic.py index d3bfb73fe239d7194fab3760555663895a209e84..eb3d46bcd66e3dc307a679e6b8dfbb9913398d36 100644 --- a/src/finn/util/basic.py +++ b/src/finn/util/basic.py @@ -70,6 +70,16 @@ def get_rtlsim_trace_depth(): return 1 +def get_remote_vivado(): + """Return the address of the remote Vivado synthesis server as set by the, + REMOTE_VIVADO environment variable, otherwise return None""" + + try: + return os.environ["REMOTE_VIVADO"] + except KeyError: + return None + + def get_num_default_workers(): """Return the number of workers for parallel transformations. Controllable via the NUM_DEFAULT_WORKERS environment variable. If the env.var. is diff --git a/src/finn/util/create.py b/src/finn/util/create.py new file mode 100644 index 0000000000000000000000000000000000000000..853cdd0d44a05426b34bf1db3caa58d9289b2e9e --- /dev/null +++ b/src/finn/util/create.py @@ -0,0 +1,178 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import numpy as np +from finn.core.modelwrapper import ModelWrapper +from onnx import TensorProto, helper +from finn.core.datatype import DataType +from finn.util.basic import calculate_signed_dot_prod_range, gen_finn_dt_tensor + + +def hls_random_mlp_maker(layer_spec): + """Create an MLP of given specification using HLSCustomOp instances. + Generate random weights/thresholds of appropriate size.""" + ret = [] + for l in layer_spec: + idt = l["idt"] + wdt = l["wdt"] + mw = l["mw"] + mh = l["mh"] + act = l["act"] + l["W"] = gen_finn_dt_tensor(wdt, (mw, mh)) + if act is None: + # no activation, produce accumulators + T = None + tdt = None + if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR: + odt = DataType.UINT32 + else: + odt = DataType.INT32 + else: + odt = act + (min, max) = calculate_signed_dot_prod_range(idt, wdt, mw) + n_steps = act.get_num_possible_values() - 1 + T = np.random.randint(min, max - 1, (mh, n_steps)).astype(np.float32) + # provide non-decreasing thresholds + T = np.sort(T, axis=1) + # generate thresholds for activation + if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR: + tdt = DataType.UINT32 + # bias thresholds to be positive + T = np.ceil((T + mw) / 2) + assert (T >= 0).all() + else: + tdt = DataType.INT32 + l["T"] = T + l["tdt"] = tdt + l["odt"] = odt + ret.append(l) + + return hls_mlp_maker(ret) + + +def hls_mlp_maker(layer_spec): + """Create an MLP of given specification using HLSCustomOp instances.""" + + current_in_name = "" + current_out_name = "" + i = 0 + + graph = helper.make_graph(nodes=[], name="mlp", inputs=[], outputs=[]) + + model = helper.make_model(graph, producer_name="finn") + model = ModelWrapper(model) + + for l in layer_spec: + current_W_name = "W_%d" % i + current_T_name = "T_%d" % i + current_in_name = "act_%d" % i + current_out_name = "act_%d" % (i + 1) + + W = l["W"] + (mw, mh) = W.shape + T = l["T"] + pe = l["pe"] + simd = l["simd"] + wdt = l["wdt"] + idt = l["idt"] + tdt = l["tdt"] + odt = l["odt"] + + if i == 0: + global_in = helper.make_tensor_value_info( + current_in_name, TensorProto.FLOAT, [1, mw] + ) + model.graph.input.append(global_in) + + if i == len(layer_spec) - 1: + global_out = helper.make_tensor_value_info( + current_out_name, TensorProto.FLOAT, [1, mh] + ) + model.graph.output.append(global_out) + + # there are two ways to implement bipolar weights and inputs for + # StreamingFC: + # - specify their datatypes as such + # - specify their datatypes as BINARY as use binaryXnorMode + if wdt == DataType.BIPOLAR and idt == DataType.BIPOLAR: + # we'll internally convert weights/inputs to binary and specify the + # datatypes as such, and also set the binaryXnorMode attribute to 1 + export_wdt = DataType.BINARY + export_idt = DataType.BINARY + binary_xnor_mode = 1 + else: + export_wdt = wdt + export_idt = idt + binary_xnor_mode = 0 + + if T is not None: + no_act = 0 + node_inp_list = [current_in_name, current_W_name, current_T_name] + if odt == DataType.BIPOLAR: + actval = 0 + else: + actval = odt.min() + else: + # no thresholds + node_inp_list = [current_in_name, current_W_name] + actval = 0 + no_act = 1 + FCLayer_node = helper.make_node( + "StreamingFCLayer_Batch", + node_inp_list, + [current_out_name], + domain="finn", + backend="fpgadataflow", + resType="ap_resource_lut()", + MW=mw, + MH=mh, + SIMD=simd, + PE=pe, + inputDataType=export_idt.name, + weightDataType=export_wdt.name, + outputDataType=odt.name, + ActVal=actval, + binaryXnorMode=binary_xnor_mode, + noActivation=no_act, + ) + + model.graph.node.append(FCLayer_node) + model.set_tensor_datatype(current_in_name, idt) + model.set_tensor_datatype(current_out_name, odt) + model.set_tensor_datatype(current_W_name, wdt) + if binary_xnor_mode: + # convert bipolar to binary + model.set_initializer(current_W_name, (W + 1) / 2) + else: + model.set_initializer(current_W_name, W) + if T is not None: + model.set_tensor_datatype(current_T_name, tdt) + model.set_initializer(current_T_name, T) + i += 1 + + return model diff --git a/src/finn/util/vivado.py b/src/finn/util/vivado.py index 561bbc8c5642c14c0572d4365492f653cc507fcc..0f82c52cb2c1fc5ee4ed5a1927f46e222e0ab9b5 100644 --- a/src/finn/util/vivado.py +++ b/src/finn/util/vivado.py @@ -28,6 +28,7 @@ import os import subprocess +from finn.util.basic import get_remote_vivado def which(program): @@ -57,6 +58,7 @@ def out_of_context_synth( fpga_part="xczu3eg-sbva484-1-e", clk_name="ap_clk_0", clk_period_ns=5.0, + remote_server=get_remote_vivado(), ): "Run out-of-context Vivado synthesis, return resources and slack." @@ -67,7 +69,10 @@ def out_of_context_synth( if which("vivado") is None: raise Exception("vivado is not in PATH, ensure settings64.sh is sourced.") omx_path = os.environ["OHMYXILINX"] - script = "vivadocompile.sh" + if remote_server is None: + script = "vivadocompile.sh" + else: + script = "vivadoprojgen.sh" # vivadocompile.sh <top-level-entity> <clock-name (optional)> <fpga-part (optional)> call_omx = "zsh %s/%s %s %s %s %f" % ( omx_path, @@ -85,6 +90,37 @@ def out_of_context_synth( vivado_proj_folder = "%s/results_%s" % (verilog_dir, top_name) res_counts_path = vivado_proj_folder + "/res.txt" + if remote_server is not None: + run_synth = """ +#!/bin/bash +which vivado; +cd %s; +vivado -mode tcl -source %s.tcl -tclargs %s; +cat %s + """ % ( + vivado_proj_folder, + top_name, + top_name, + res_counts_path, + ) + with open(vivado_proj_folder + "/run.sh", "w") as f: + f.write(run_synth) + # note that this assumes the same temp folder can be created on the + # remote server + remote_server_uri = remote_server + ":" + verilog_dir + copy_files = "rsync -avz %s %s" % (verilog_dir + "/", remote_server_uri + "/") + copy_files = copy_files.split() + proc = subprocess.Popen(copy_files, cwd=verilog_dir, env=os.environ) + proc.communicate() + vivado_cmd = "bash %s/run.sh" % vivado_proj_folder + run_vivado = ["ssh", "-t", remote_server, vivado_cmd] + proc = subprocess.Popen(run_vivado, cwd=verilog_dir, env=os.environ) + proc.communicate() + remote_server_result = remote_server + ":" + res_counts_path + copy_results = "rsync -avz %s %s" % (remote_server_result, res_counts_path) + copy_results = copy_results.split() + proc = subprocess.Popen(copy_results, cwd=verilog_dir, env=os.environ) + proc.communicate() with open(res_counts_path, "r") as myfile: res_data = myfile.read().split("\n") diff --git a/tests/end2end/test_end2end_cnv_w1a1.py b/tests/end2end/test_end2end_cnv_w1a1.py index c3359dcc82650bf0e9e8a5bc5276f5ca770ee96c..e3f281904d7db1349d74d6eb70cad20a8f3d10af 100644 --- a/tests/end2end/test_end2end_cnv_w1a1.py +++ b/tests/end2end/test_end2end_cnv_w1a1.py @@ -72,6 +72,7 @@ from finn.util.test import get_test_model_trained, load_test_checkpoint_or_skip from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim from finn.transformation.fpgadataflow.insert_fifo import InsertFIFO +from finn.core.throughput_test import throughput_test_rtlsim build_dir = "/tmp/" + os.environ["FINN_INST_NAME"] test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1") @@ -142,15 +143,15 @@ def test_end2end_cnv_w1a1_fold_and_tlastmarker(): fc_layers = model.get_nodes_by_op_type("StreamingFCLayer_Batch") # each tuple is (PE, SIMD, in_fifo_depth) for a layer folding = [ - (16, 3, 128), - (32, 32, 128), - (16, 32, 128), - (16, 32, 128), - (4, 32, 81), + (16, 3, 256), + (32, 32, 256), + (16, 32, 256), + (16, 32, 256), + (4, 32, 214), (1, 32, 2), - (1, 4, 2), - (1, 8, 128), - (5, 1, 3), + (1, 4, 126), + (1, 8, 62), + (5, 1, 6), ] for fcl, (pe, simd, ififodepth) in zip(fc_layers, folding): fcl_inst = getCustomOp(fcl) @@ -159,10 +160,12 @@ def test_end2end_cnv_w1a1_fold_and_tlastmarker(): fcl_inst.set_nodeattr("inFIFODepth", ififodepth) swg_layers = model.get_nodes_by_op_type("ConvolutionInputGenerator") + swg_idepth = [2, 51, 9, 106, 2, 2] for i in range(len(swg_layers)): swg_inst = getCustomOp(swg_layers[i]) simd = folding[i][1] swg_inst.set_nodeattr("SIMD", simd) + swg_inst.set_nodeattr("inFIFODepth", swg_idepth[i]) model = model.transform(InsertDWC()) model = model.transform(InsertFIFO()) @@ -221,6 +224,20 @@ def test_end2end_cnv_w1a1_verify_dataflow_part(): assert np.isclose(res_cppsim, res_rtlsim_whole).all() +@pytest.mark.vivado +def test_end2end_cnv_w1a1_throughput_test_rtlsim(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_cnv_w1a1_ipstitch_whole_rtlsim.onnx" + ) + model.set_metadata_prop("rtlsim_trace", "rtlsim_trace.vcd") + # os.environ["RTLSIM_TRACE_DEPTH"] = "4" + # run through IP-stitched rtlsim with increasing batch sizes and + # check the number of cycles it takes to execute + ret = throughput_test_rtlsim(model, 10) + # TODO check for expected performance + assert ret["cycles"] > 0 + + @pytest.mark.vivado def test_end2end_cnv_w1a1_verify_all(): # use the streamlined model as the "golden" model for right answers diff --git a/tests/end2end/test_end2end_tfc_w1a1.py b/tests/end2end/test_end2end_tfc_w1a1.py index 13758e01e1df96a79658f5ebc7501c9fb43d0882..ebfed5e571f1e7e2499c3501c6859239a329677a 100644 --- a/tests/end2end/test_end2end_tfc_w1a1.py +++ b/tests/end2end/test_end2end_tfc_w1a1.py @@ -72,6 +72,7 @@ from finn.util.basic import pynq_part_map from finn.util.test import get_test_model_trained, load_test_checkpoint_or_skip from finn.transformation.fpgadataflow.annotate_resources import AnnotateResources from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim +from finn.core.throughput_test import throughput_test_rtlsim import finn.util.vcd as vcd build_dir = "/tmp/" + os.environ["FINN_INST_NAME"] @@ -225,6 +226,21 @@ def test_end2end_tfc_w1a1_verify_fifo_fullness(): ) +@pytest.mark.vivado +def test_end2end_tfc_w1a1_throughput_test_rtlsim(): + model = load_test_checkpoint_or_skip( + build_dir + "/end2end_tfc_w1a1_ipstitch_whole_rtlsim.onnx" + ) + # run through IP-stitched rtlsim with increasing batch sizes and + # check the number of cycles it takes to execute + ret = throughput_test_rtlsim(model, 1) + assert ret["cycles"] == 205 + ret = throughput_test_rtlsim(model, 10) + assert ret["cycles"] == 844 + ret = throughput_test_rtlsim(model, 100) + assert ret["cycles"] == 7234 + + @pytest.mark.vivado def test_end2end_tfc_w1a1_verify_all(): # use the streamlined model as the "golden" model for right answers diff --git a/tests/util/test_create.py b/tests/util/test_create.py new file mode 100644 index 0000000000000000000000000000000000000000..7173add35abf04a35c33b0ef10b42ffdb296a653 --- /dev/null +++ b/tests/util/test_create.py @@ -0,0 +1,64 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import pytest +import finn.util.create as create +from finn.core.datatype import DataType + + +@pytest.mark.parametrize("bitwidth", [DataType.BIPOLAR, DataType.INT2, DataType.INT4]) +def test_hls_random_mlp_maker(bitwidth): + w = bitwidth + a = bitwidth + layer_spec = [ + { + "mw": 185, + "mh": 100, + "simd": 185, + "pe": 100, + "idt": DataType.BIPOLAR, + "wdt": w, + "act": a, + }, + {"mw": 100, "mh": 100, "simd": 100, "pe": 100, "idt": a, "wdt": w, "act": a}, + {"mw": 100, "mh": 100, "simd": 100, "pe": 100, "idt": a, "wdt": w, "act": a}, + {"mw": 100, "mh": 100, "simd": 100, "pe": 100, "idt": a, "wdt": w, "act": a}, + { + "mw": 100, + "mh": 1, + "simd": 100, + "pe": 1, + "idt": a, + "wdt": w, + "act": DataType.BIPOLAR, + }, + ] + + ret = create.hls_random_mlp_maker(layer_spec) + assert len(ret.graph.node) == 5 + ret.save("mlp-%s.onnx" % str(bitwidth))