diff --git a/.github/workflows/quicktest-dev-pr.yml b/.github/workflows/quicktest-dev-pr.yml new file mode 100644 index 0000000000000000000000000000000000000000..cd59a629405c748187cdf478c0bdb0694c58c79f --- /dev/null +++ b/.github/workflows/quicktest-dev-pr.yml @@ -0,0 +1,21 @@ +name: QuicktestPRAgainstDev + +on: + pull_request: + branches: [ dev ] + push: + branches: [ dev ] + + +jobs: + + test: + name: Run quicktest on PR branch + runs-on: ubuntu-latest + + steps: + - name: checkout + uses: actions/checkout@v2 + + - name: DockerRunQuicktest + run: sh run-docker.sh quicktest diff --git a/AUTHORS.rst b/AUTHORS.rst index e231e61d38991e11e2e43a7c9a3a78c50c878244..eb1e06e54b7eb6deedd3e7f8392bb3aa257e7dc6 100644 --- a/AUTHORS.rst +++ b/AUTHORS.rst @@ -6,3 +6,5 @@ Contributors * Jakoba Petri-Koenig (@auphelia) * Andrea Rigoni (@AndreaRigoni) * Hendrik Borras (@HenniOVP) +* Lucian Petrica (@quetric) +* Tobias Alonso (@Tobi-Alonso) diff --git a/run-docker.sh b/run-docker.sh index e1f17e728204217ff3caa6e486b2daae16d6d271..186efc322a8f437be0371b5a142a9dd524d1abf3 100755 --- a/run-docker.sh +++ b/run-docker.sh @@ -96,6 +96,8 @@ gecho "Port-forwarding for Netron $NETRON_PORT:$NETRON_PORT" gecho "Vivado IP cache dir is at $VIVADO_IP_CACHE" gecho "Using default PYNQ board $PYNQ_BOARD" +DOCKER_INTERACTIVE = "" + if [ "$1" = "test" ]; then gecho "Running test suite (all tests)" DOCKER_CMD="python setup.py test" @@ -108,6 +110,7 @@ elif [ "$1" = "notebook" ]; then else gecho "Running container only" DOCKER_CMD="bash" + DOCKER_INTERACTIVE="-it" fi # Build the FINN Docker image @@ -123,7 +126,7 @@ docker build -f docker/Dockerfile.finn_dev --tag=$DOCKER_TAG \ # Launch container with current directory mounted # important to pass the --init flag here for correct Vivado operation, see: # https://stackoverflow.com/questions/55733058/vivado-synthesis-hangs-in-docker-container-spawned-by-jenkins -docker run -t --rm --name $DOCKER_INST_NAME -it --init \ +docker run -t --rm --name $DOCKER_INST_NAME $DOCKER_INTERACTIVE --init \ --hostname $DOCKER_INST_NAME \ -e "XILINX_VIVADO=$VIVADO_PATH" \ -e "SHELL=/bin/bash" \ diff --git a/src/finn/core/modelwrapper.py b/src/finn/core/modelwrapper.py index cdf99dc3bd8b698bec60d79ef6e34640ac3b740c..ed32426abcc8ea71428a7f746a99454e8e4a2c17 100644 --- a/src/finn/core/modelwrapper.py +++ b/src/finn/core/modelwrapper.py @@ -333,6 +333,22 @@ class ModelWrapper: else: return None + def is_fork_node(self, node): + """Checks if the given node is a fork, that is, the node has multiple + direct successors""" + direct_successors = self.find_direct_successors(node) + is_fork = False if direct_successors is None else (len(direct_successors) > 1) + return is_fork + + def is_join_node(self, node): + """Checks if the given node is a join, that is, the node has multiple + direct predecessors""" + direct_predecessors = self.find_direct_predecessors(node) + is_join = ( + False if direct_predecessors is None else (len(direct_predecessors) > 1) + ) + return is_join + def get_all_tensor_names(self): """Returns a list of all (input, output and value_info) tensor names in the graph.""" diff --git a/src/finn/custom_op/fpgadataflow/__init__.py b/src/finn/custom_op/fpgadataflow/__init__.py index a99d62fd18a958d37fef6b3e1939ef97e859b0b2..17a55e519ed0440f68e295aecaab179e6adf632f 100644 --- a/src/finn/custom_op/fpgadataflow/__init__.py +++ b/src/finn/custom_op/fpgadataflow/__init__.py @@ -40,6 +40,7 @@ from finn.util.basic import ( from finn.util.fpgadataflow import ( IPGenBuilder, pyverilate_get_liveness_threshold_cycles, + rtlsim_multi_io, ) from . import templates @@ -109,6 +110,31 @@ class HLSCustomOp(CustomOp): ) return verilog_file + def get_all_verilog_paths(self): + "Return list of all folders containing Verilog code for this node." + + code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") + assert ( + code_gen_dir != "" + ), """Node attribute "code_gen_dir_ipgen" is + not set. Please run HLSSynthIP first.""" + verilog_path = "{}/project_{}/sol1/impl/verilog/".format( + code_gen_dir, self.onnx_node.name + ) + # default impl only returns the HLS verilog codegen dir + return [verilog_path] + + def get_all_verilog_filenames(self): + "Return list of all Verilog files used for this node." + + verilog_files = [] + verilog_paths = self.get_all_verilog_paths() + for verilog_path in verilog_paths: + for f in os.listdir(verilog_path): + if f.endswith(".v"): + verilog_files += [f] + return verilog_files + def prepare_rtlsim(self): """Creates a Verilator emulation library for the RTL code generated for this node, sets the rtlsim_so attribute to its path and returns @@ -116,24 +142,15 @@ class HLSCustomOp(CustomOp): if PyVerilator is None: raise ImportError("Installation of PyVerilator is required.") - # ensure that code is generated - code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") - assert ( - code_gen_dir != "" - ), """Node attribute "code_gen_dir_ipgen" is - not set. Please run HLSSynthIP first.""" - verilog_file = self.get_verilog_top_filename() - assert os.path.isfile(verilog_file), "Cannot find top-level Verilog file." + verilog_paths = self.get_all_verilog_paths() + verilog_files = self.get_all_verilog_filenames() # build the Verilator emu library sim = PyVerilator.build( - verilog_file, + verilog_files, build_dir=make_build_dir("pyverilator_" + self.onnx_node.name + "_"), - verilog_path=[ - "{}/project_{}/sol1/impl/verilog/".format( - code_gen_dir, self.onnx_node.name - ) - ], + verilog_path=verilog_paths, trace_depth=get_rtlsim_trace_depth(), + top_module_name=self.get_verilog_top_module_name(), ) # save generated lib filename in attribute self.set_nodeattr("rtlsim_so", sim.lib._name) @@ -302,14 +319,24 @@ Found no codegen dir for this node, did you run the prepare_cppsim transformatio ) def npy_to_dynamic_output(self, context): - """Reads the output from a .npy file and saves it at the right place in - the context dictionary.""" - # TODO support multi-output nodes as needed + """Reads the output from an output.npy file generated from cppsim and + places its content into the context dictionary.""" node = self.onnx_node code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") output = np.load("{}/output.npy".format(code_gen_dir)) context[node.output[0]] = output + def npy_to_dynamic_outputs(self, context, npy_list): + """Reads the output from .npy files generated from cppsim and places + their content into the context dictionary. + npy_list is a list specifying which files to read, and its order must + match the order of node outputs.""" + node = self.onnx_node + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + for i in range(len(npy_list)): + output = np.load("{}/{}".format(code_gen_dir, npy_list[i])) + context[node.output[i]] = output + def exec_precompiled_singlenode_model(self): """Executes precompiled executable.""" executable_path = self.get_nodeattr("executable_path") @@ -405,6 +432,16 @@ compilation transformations? sim.stop_vcd_trace() return outputs + def rtlsim_multi_io(self, sim, io_dict): + "Run rtlsim for this node, supports multiple i/o streams." + + trace_file = self.get_nodeattr("rtlsim_trace") + if trace_file == "default": + trace_file = self.onnx_node.name + ".vcd" + num_out_values = self.get_number_output_values() + total_cycle_count = rtlsim_multi_io(sim, io_dict, num_out_values, trace_file) + self.set_nodeattr("sim_cycles", total_cycle_count) + def execute_node(self, context, graph): """Executes single node using cppsim or rtlsim.""" mode = self.get_nodeattr("exec_mode") diff --git a/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py b/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py new file mode 100644 index 0000000000000000000000000000000000000000..54051af5e0387081a23e1f8fa77ec9e363098830 --- /dev/null +++ b/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py @@ -0,0 +1,361 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import os + +import numpy as np + +from finn.core.datatype import DataType +from finn.custom_op.fpgadataflow import HLSCustomOp +from onnx import TensorProto, helper +from finn.util.data_packing import npy_to_rtlsim_input, rtlsim_output_to_npy + + +class DuplicateStreams_Batch(HLSCustomOp): + """Class that corresponds to finn-hlslib function of the same name.""" + + def __init__(self, onnx_node): + super().__init__(onnx_node) + + def get_nodeattr_types(self): + my_attrs = { + "NumChannels": ("i", True, 0), + "PE": ("i", True, 0), + # FINN DataTypes for input + "inputDataType": ("s", True, ""), + # number of input vectors, examples: + # [1] is a single vector (like a FC layer with batch=1) + # [4] is four vectors (like a FC layer with batch=4) + # [1, 4, 4] is four * four vectors (like a conv layer with batch=1) + "numInputVectors": ("ints", False, [1]), + } + my_attrs.update(super().get_nodeattr_types()) + return my_attrs + + def get_normal_input_shape(self): + ch = self.get_nodeattr("NumChannels") + vecs = list(self.get_nodeattr("numInputVectors")) + ishape = tuple(vecs + [ch]) + return ishape + + def get_folded_input_shape(self): + ch = self.get_nodeattr("NumChannels") + pe = self.get_nodeattr("PE") + vecs = list(self.get_nodeattr("numInputVectors")) + assert ch % pe == 0, "PE must divide NumChannels" + folds = int(ch / pe) + folded_ishape = tuple(vecs + [folds, pe]) + return folded_ishape + + def get_normal_output_shape(self): + return self.get_normal_input_shape() + + def get_folded_output_shape(self): + return self.get_folded_input_shape() + + def make_shape_compatible_op(self, model): + exp_ishape = self.get_normal_input_shape() + oshape = self.get_normal_output_shape() + ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0])) + assert ishape == exp_ishape, "Unexpected input shape." + # implement tensor with correct shape + values = np.random.randn(*oshape).astype(np.float32) + split_input = np.concatenate((values, values), axis=0) + return helper.make_node( + "Split", + inputs=[split_input], + outputs=[self.onnx_node.output[0], self.onnx_node.output[0]], + value=helper.make_tensor( + name="const_tensor", data_type=TensorProto.FLOAT, axis=0 + ), + ) + + def infer_node_datatype(self, model): + odt = self.get_output_datatype() + model.set_tensor_datatype(self.onnx_node.output[0], odt) + + def verify_node(self): + info_messages = [] + # verify that "domain" is set to "finn" + domain_value = self.onnx_node.domain + if domain_value == "finn": + info_messages.append("Attribute domain is set correctly") + else: + info_messages.append('Attribute domain should be set to "finn"') + + # verify that "backend" is set to "fpgadataflow" + backend_value = self.get_nodeattr("backend") + if backend_value == "fpgadataflow": + info_messages.append("Attribute backend is set correctly") + else: + info_messages.append('Attribute backend should be set to "fpgadataflow"') + + # verify that all necessary attributes exist + try: + self.get_nodeattr("code_gen_dir_cppsim") + self.get_nodeattr("executable_path") + self.get_nodeattr("NumChannels") + self.get_nodeattr("PE") + self.get_nodeattr("inputDataType") + info_messages.append("All necessary attributes exist") + except Exception: + info_messages.append( + """The required GlobalAccPool_Batch attributes do not exist.""" + ) + + return info_messages + + def get_input_datatype(self): + """Returns FINN DataType of input.""" + return DataType[self.get_nodeattr("inputDataType")] + + def get_output_datatype(self): + """Returns FINN DataType of output.""" + return DataType[self.get_nodeattr("inputDataType")] + + def get_instream_width(self): + """Returns input stream width.""" + ibits = self.get_input_datatype().bitwidth() + pe = self.get_nodeattr("PE") + in_width = pe * ibits + return in_width + + def get_outstream_width(self): + """Returns output stream width.""" + obits = self.get_output_datatype().bitwidth() + pe = self.get_nodeattr("PE") + out_width = pe * obits + return out_width + + def get_number_output_values(self): + return 2 * np.prod(self.get_folded_output_shape()[1:-1]) + + def execute_node(self, context, graph): + mode = self.get_nodeattr("exec_mode") + node = self.onnx_node + exp_ishape = self.get_normal_input_shape() + exp_oshape = self.get_normal_output_shape() + folded_ishape = self.get_folded_input_shape() + folded_oshape = self.get_folded_output_shape() + + if mode == "cppsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + elif mode == "rtlsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + inp = context[node.input[0]] + assert str(inp.dtype) == "float32", "Input datatype is not float32" + assert inp.shape == exp_ishape, """Input shape doesn't match expected shape .""" + export_idt = self.get_input_datatype() + # reshape input into folded form + inp = inp.reshape(folded_ishape) + # make copy before saving array + reshaped_input = inp.copy() + np.save(os.path.join(code_gen_dir, "input_0.npy"), reshaped_input) + + if mode == "cppsim": + # execute the precompiled model + super().exec_precompiled_singlenode_model() + # load output npy file + super().npy_to_dynamic_outputs(context, ["output0.npy", "output1.npy"]) + assert ( + context[node.output[0]].shape == folded_oshape + ), "cppsim \ + did not produce expected ofolded utput shape" + assert ( + context[node.output[1]].shape == folded_oshape + ), "cppsim \ + did not produce expected ofolded utput shape" + context[node.output[0]] = context[node.output[0]].reshape(*exp_oshape) + context[node.output[1]] = context[node.output[1]].reshape(*exp_oshape) + elif mode == "rtlsim": + sim = self.get_rtlsim() + nbits = self.get_instream_width() + rtlsim_inp = npy_to_rtlsim_input( + "{}/input_0.npy".format(code_gen_dir), export_idt, nbits + ) + super().reset_rtlsim(sim) + super().toggle_clk(sim) + rtlsim_dict = { + "inputs": {"in0": rtlsim_inp}, + "outputs": {"out0": [], "out1": []}, + } + self.rtlsim_multi_io(sim, rtlsim_dict) + odt = self.get_output_datatype() + target_bits = odt.bitwidth() + packed_bits = self.get_outstream_width() + out_shape = self.get_folded_output_shape() + + out_npy_path = "{}/output0.npy".format(code_gen_dir) + rtlsim_output_to_npy( + rtlsim_dict["outputs"]["out0"], + out_npy_path, + odt, + out_shape, + packed_bits, + target_bits, + ) + # load and reshape output 0 + output = np.load(out_npy_path) + output = np.asarray([output], dtype=np.float32).reshape(*exp_oshape) + context[node.output[0]] = output + + out_npy_path = "{}/output1.npy".format(code_gen_dir) + rtlsim_output_to_npy( + rtlsim_dict["outputs"]["out1"], + out_npy_path, + odt, + out_shape, + packed_bits, + target_bits, + ) + # load and reshape output 1 + output = np.load(out_npy_path) + output = np.asarray([output], dtype=np.float32).reshape(*exp_oshape) + context[node.output[1]] = output + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + assert ( + context[node.output[0]].shape == exp_oshape + ), """Output0 shape doesn't match expected shape.""" + assert ( + context[node.output[1]].shape == exp_oshape + ), """Output1 shape doesn't match expected shape.""" + + def global_includes(self): + self.code_gen_dict["$GLOBALS$"] = ['#include "streamtools.h"'] + + def defines(self, var): + self.code_gen_dict["$DEFINES$"] = [] + + def read_npy_data(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_input_datatype() + elem_bits = dtype.bitwidth() + packed_bits = self.get_instream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_in = "%s/input_0.npy" % code_gen_dir + self.code_gen_dict["$READNPYDATA$"] = [] + self.code_gen_dict["$READNPYDATA$"].append( + 'npy2apintstream<%s, %s, %d, %s>("%s", in0);' + % (packed_hls_type, elem_hls_type, elem_bits, npy_type, npy_in) + ) + + def strm_decl(self): + self.code_gen_dict["$STREAMDECLARATIONS$"] = [] + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> in0 ("in0");'.format(self.get_instream_width()) + ) + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> out0 ("out0");'.format(self.get_outstream_width()) + ) + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> out1 ("out1");'.format(self.get_outstream_width()) + ) + + def docompute(self): + self.code_gen_dict["$DOCOMPUTE$"] = [ + """DuplicateStreams_Batch<{}, {}> (in0, out0, out1, 1);""".format( + self.get_outstream_width(), self.get_number_output_values() // 2, + ) + ] + + def dataoutstrm(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_output_datatype() + elem_bits = dtype.bitwidth() + packed_bits = self.get_outstream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_out = "%s/output0.npy" % code_gen_dir + npy_out1 = "%s/output1.npy" % code_gen_dir + oshape = self.get_folded_output_shape() + oshape_cpp_str = str(oshape).replace("(", "{").replace(")", "}") + + self.code_gen_dict["$DATAOUTSTREAM$"] = [ + 'apintstream2npy<%s, %s, %d, %s>(out0, %s, "%s");' + % ( + packed_hls_type, + elem_hls_type, + elem_bits, + npy_type, + oshape_cpp_str, + npy_out, + ) + ] + + self.code_gen_dict["$DATAOUTSTREAM$"] += [ + 'apintstream2npy<%s, %s, %d, %s>(out1, %s, "%s");' + % ( + packed_hls_type, + elem_hls_type, + elem_bits, + npy_type, + oshape_cpp_str, + npy_out1, + ) + ] + + def save_as_npy(self): + self.code_gen_dict["$SAVEASCNPY$"] = [] + + def blackboxfunction(self): + self.code_gen_dict["$BLACKBOXFUNCTION$"] = [ + """void {}(hls::stream<ap_uint<{}>> &in0, + hls::stream<ap_uint<{}>> &out0, + hls::stream<ap_uint<{}>> &out1)""".format( + self.onnx_node.name, + self.get_instream_width(), + self.get_outstream_width(), + self.get_outstream_width(), + ) + ] + + def pragmas(self): + self.code_gen_dict["$PRAGMAS$"] = ["#pragma HLS INTERFACE axis port=in0"] + self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out0") + self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out1") + self.code_gen_dict["$PRAGMAS$"].append( + "#pragma HLS INTERFACE ap_ctrl_none port=return" + ) diff --git a/src/finn/custom_op/fpgadataflow/sameresize_batch.py b/src/finn/custom_op/fpgadataflow/sameresize_batch.py new file mode 100644 index 0000000000000000000000000000000000000000..c459cac1e9c17336200a1fc85aad2af5e14e2c61 --- /dev/null +++ b/src/finn/custom_op/fpgadataflow/sameresize_batch.py @@ -0,0 +1,298 @@ +import os +import numpy as np +from onnx import TensorProto, helper +from finn.core.datatype import DataType +from finn.custom_op.fpgadataflow import HLSCustomOp +from finn.util.data_packing import npy_to_rtlsim_input, rtlsim_output_to_npy + + +class SameResize_Batch(HLSCustomOp): + """Class that corresponds to finn-hlslib SameResize function. + Implements 'same' padding on a given input image.""" + + def __init__(self, onnx_node): + super().__init__(onnx_node) + + def get_nodeattr_types(self): + my_attrs = { + "ImgDim": ("i", True, 0), + "KernelDim": ("i", True, 0), + "Stride": ("i", True, 0), + "NumChannels": ("i", True, 0), + # FINN input datatype + "inputDataType": ("s", True, ""), + # distribution of added values to achieve "same" padding + "PaddingStyle": ("i", True, 2), + } + my_attrs.update(super().get_nodeattr_types()) + return my_attrs + + def get_normal_input_shape(self): + idim = self.get_nodeattr("ImgDim") + num_ch = self.get_nodeattr("NumChannels") + + ishape = (1, idim, idim, num_ch) + return ishape + + def get_normal_output_shape(self): + idim = self.get_nodeattr("ImgDim") + num_ch = self.get_nodeattr("NumChannels") + kdim = self.get_nodeattr("KernelDim") + stride = self.get_nodeattr("Stride") + assert idim % stride == 0, "Stride must divide input dimension." + # number of "same" windows over the input data + same_windows = idim // stride + odim = kdim + stride * (same_windows - 1) + + oshape = (1, odim, odim, num_ch) + return oshape + + def get_folded_input_shape(self): + # even though there is no folding in the current hlslib op, + # insert a time multiplexing axis to remain compatible with the + # shapes produced by the rest of the dataflow pipeline + ret = list(self.get_normal_input_shape()) + ret.insert(-1, 1) + return tuple(ret) + + def get_folded_output_shape(self): + # even though there is no folding in the current hlslib op, + # insert a time multiplexing axis to remain compatible with the + # shapes produced by the rest of the dataflow pipeline + ret = list(self.get_normal_output_shape()) + ret.insert(-1, 1) + return tuple(ret) + + def make_shape_compatible_op(self, model): + exp_ishape = self.get_normal_input_shape() + oshape = self.get_normal_output_shape() + ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0])) + assert ishape == exp_ishape, "Unexpect input shape for SameResize." + # implement tensor with correct shape + values = np.random.randn(*oshape).astype(np.float32) + return helper.make_node( + "Constant", + inputs=[], + outputs=[self.onnx_node.output[0]], + value=helper.make_tensor( + name="const_tensor", + data_type=TensorProto.FLOAT, + dims=values.shape, + vals=values.flatten().astype(float), + ), + ) + + def infer_node_datatype(self, model): + node = self.onnx_node + # data type stays the same + dtype = model.get_tensor_datatype(node.input[0]) + exp_idtype = self.get_input_datatype() + assert dtype == exp_idtype, "Unexpected datatype for SameResize_Batch" + model.set_tensor_datatype(node.output[0], dtype) + + def verify_node(self): + pass + + def get_input_datatype(self): + """Returns FINN DataType of input.""" + ret = DataType[self.get_nodeattr("inputDataType")] + # the hlslib op always pads with zeroes, so ensure that the DataType + # is able to represent zeroes + assert ret.allowed(0), "SameResize_Batch DataType must support zero" + return ret + + def get_output_datatype(self): + """Returns FINN DataType of output. (Same as input datatype)""" + return self.get_input_datatype() + + def get_instream_width(self): + ibits = self.get_input_datatype().bitwidth() + num_ch = self.get_nodeattr("NumChannels") + + return ibits * num_ch + + def get_outstream_width(self): + obits = self.get_output_datatype().bitwidth() + num_ch = self.get_nodeattr("NumChannels") + + return obits * num_ch + + def get_number_output_values(self): + folded_oshape = self.get_folded_output_shape() + return np.prod(folded_oshape[:-1]) + + def global_includes(self): + self.code_gen_dict["$GLOBALS$"] = ['#include "streamtools.h"'] + + def defines(self, var): + numReps = 1 + assert self.get_nodeattr("PaddingStyle") == 2, "Only PaddingStyle=2 supported" + self.code_gen_dict["$DEFINES$"] = [ + """#define ImgDim1 {}\n #define KernelDim1 {}\n + #define Stride1 {}\n #define NumChannels1 {}\n + #define PaddingStyle1 {}\n #define numReps {}""".format( + self.get_nodeattr("ImgDim"), + self.get_nodeattr("KernelDim"), + self.get_nodeattr("Stride"), + self.get_nodeattr("NumChannels"), + self.get_nodeattr("PaddingStyle"), + numReps, + ) + ] + + def read_npy_data(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_input_datatype() + if dtype == DataType.BIPOLAR: + # use binary for bipolar storage + dtype = DataType.BINARY + elem_bits = dtype.bitwidth() + packed_bits = self.get_instream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_in = "%s/input_0.npy" % code_gen_dir + self.code_gen_dict["$READNPYDATA$"] = [] + self.code_gen_dict["$READNPYDATA$"].append( + 'npy2apintstream<%s, %s, %d, %s>("%s", in0);' + % (packed_hls_type, elem_hls_type, elem_bits, npy_type, npy_in) + ) + + def strm_decl(self): + self.code_gen_dict["$STREAMDECLARATIONS$"] = [] + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> in0 ("in0");'.format(self.get_instream_width()) + ) + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> out ("out");'.format(self.get_outstream_width()) + ) + + def docompute(self): + in_t = self.get_input_datatype().get_hls_datatype_str() + node = self.onnx_node + self.code_gen_dict["$DOCOMPUTE$"] = [ + """{}<ImgDim1, KernelDim1, Stride1, NumChannels1, + {}, PaddingStyle1> (in0, out, numReps);""".format( + node.op_type, in_t + ) + ] + + def dataoutstrm(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_output_datatype() + if dtype == DataType.BIPOLAR: + # use binary for bipolar storage + dtype = DataType.BINARY + elem_bits = dtype.bitwidth() + packed_bits = self.get_outstream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_out = "%s/output.npy" % code_gen_dir + oshape = self.get_folded_output_shape() + oshape_cpp_str = str(oshape).replace("(", "{").replace(")", "}") + + self.code_gen_dict["$DATAOUTSTREAM$"] = [ + 'apintstream2npy<%s, %s, %d, %s>(out, %s, "%s");' + % ( + packed_hls_type, + elem_hls_type, + elem_bits, + npy_type, + oshape_cpp_str, + npy_out, + ) + ] + + def save_as_npy(self): + self.code_gen_dict["$SAVEASCNPY$"] = [] + + def blackboxfunction(self): + packed_bits = self.get_instream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + self.code_gen_dict["$BLACKBOXFUNCTION$"] = [ + "void %s(hls::stream<%s > &in0, hls::stream<%s > &out)" + % (self.onnx_node.name, packed_hls_type, packed_hls_type) + ] + + def pragmas(self): + self.code_gen_dict["$PRAGMAS$"] = ["#pragma HLS INTERFACE axis port=in0"] + self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out") + self.code_gen_dict["$PRAGMAS$"].append( + "#pragma HLS INTERFACE ap_ctrl_none port=return" + ) + + def execute_node(self, context, graph): + mode = self.get_nodeattr("exec_mode") + node = self.onnx_node + exp_ishape = self.get_normal_input_shape() + exp_oshape = self.get_normal_output_shape() + folded_oshape = self.get_folded_output_shape() + + if mode == "cppsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + elif mode == "rtlsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + inp = context[node.input[0]] + assert str(inp.dtype) == "float32", "Input datatype is not float32" + assert ( + inp.shape == exp_ishape + ), """Input shape doesn't + match expected shape (1, ImgDim, ImgDim, NumChannels).""" + export_idt = self.get_input_datatype() + + # no reshaping for input since assuming no folding on input + # make copy before saving array + inp = inp.copy() + np.save(os.path.join(code_gen_dir, "input_0.npy"), inp) + + if mode == "cppsim": + # execute the precompiled model + super().exec_precompiled_singlenode_model() + # load output npy file + super().npy_to_dynamic_output(context) + assert ( + context[node.output[0]].shape == folded_oshape + ), "cppsim \ + did not produce expected ofolded utput shape" + context[node.output[0]] = context[node.output[0]].reshape(*exp_oshape) + elif mode == "rtlsim": + sim = self.get_rtlsim() + nbits = self.get_instream_width() + rtlsim_inp = npy_to_rtlsim_input( + "{}/input_0.npy".format(code_gen_dir), export_idt, nbits + ) + super().reset_rtlsim(sim) + super().toggle_clk(sim) + rtlsim_output = self.rtlsim(sim, rtlsim_inp) + odt = export_idt + target_bits = odt.bitwidth() + packed_bits = self.get_outstream_width() + out_npy_path = "{}/output.npy".format(code_gen_dir) + out_shape = self.get_folded_output_shape() + rtlsim_output_to_npy( + rtlsim_output, out_npy_path, odt, out_shape, packed_bits, target_bits + ) + # load and reshape output + output = np.load(out_npy_path) + output = np.asarray([output], dtype=np.float32).reshape(*exp_oshape) + context[node.output[0]] = output + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + assert ( + context[node.output[0]].shape == exp_oshape + ), """Output shape doesn't match expected shape + (1, OutputDim, OutputDim, NumChannels).""" diff --git a/src/finn/custom_op/fpgadataflow/thresholding_batch.py b/src/finn/custom_op/fpgadataflow/thresholding_batch.py new file mode 100644 index 0000000000000000000000000000000000000000..fa33c70218fab16f106da45e296f0d59ae4ea606 --- /dev/null +++ b/src/finn/custom_op/fpgadataflow/thresholding_batch.py @@ -0,0 +1,551 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +from math import ceil +import os + +import numpy as np + +from onnx import TensorProto, helper +from finn.core.datatype import DataType +from finn.custom_op.fpgadataflow import HLSCustomOp +from finn.util.basic import interleave_matrix_outer_dim_from_partitions +from finn.util.data_packing import ( + npy_to_rtlsim_input, + numpy_to_hls_code, + rtlsim_output_to_npy, +) +from . import templates + +# ONNX i/o tensor shape assumptions for Thresholding: +# input 0 is the input tensor, shape (..., NumChannels) +# input 1 is the threshold tensor, shape (NumChannels, n_thres) +# output 0 is the output tensor, shape (..., NumChannels) - same as input +# the ... here can be any shape (representing groups of vectors) + + +class Thresholding_Batch(HLSCustomOp): + """Class that corresponds to finn-hls Thresholding_Batch function.""" + + def __init__(self, onnx_node): + super().__init__(onnx_node) + self.decoupled_wrapper = templates.decoupled_wrapper + + def get_nodeattr_types(self): + my_attrs = { + "PE": ("i", True, 0), + "NumChannels": ("i", True, 0), + # string defining memory type + "ram_style": ("s", False, "distributed"), + # FINN DataTypes for inputs, weights, outputs + "inputDataType": ("s", True, ""), + "outputDataType": ("s", True, ""), + # input and output FIFO depths + "inFIFODepth": ("i", False, 0), + "outFIFODepth": ("i", False, 0), + # number of input vectors, examples: + # [1] is a single vector (like a FC layer with batch=1) + # [4] is four vectors (like a FC layer with batch=4) + # [1, 4, 4] is four * four vectors (like a conv layer with batch=1) + "numInputVectors": ("ints", False, [1]), + } + my_attrs.update(super().get_nodeattr_types()) + return my_attrs + + def calc_tmem(self): + """Calculates and returns TMEM.""" + mh = self.get_nodeattr("NumChannels") + pe = self.get_nodeattr("PE") + return mh // pe + + def make_shape_compatible_op(self, model): + oshape = self.get_normal_output_shape() + # implement tensor with correct shape + values = np.random.randn(*oshape).astype(np.float32) + return helper.make_node( + "Constant", + inputs=[], + outputs=[self.onnx_node.output[0]], + value=helper.make_tensor( + name="const_tensor", + data_type=TensorProto.FLOAT, + dims=values.shape, + vals=values.flatten().astype(float), + ), + ) + + def infer_node_datatype(self, model): + node = self.onnx_node + # check input datatype against property + idt_name = self.get_input_datatype().name + exp_idt_name = self.get_nodeattr("inputDataType") + assert exp_idt_name == idt_name, "Bad input DataType for Thresholding layer" + # set output datatype from property + odt = self.get_output_datatype() + model.set_tensor_datatype(node.output[0], odt) + + def verify_node(self): + info_messages = [] + # verify that "domain" is set to "finn" + domain_value = self.onnx_node.domain + if domain_value == "finn": + info_messages.append("Attribute domain is set correctly") + else: + info_messages.append('Attribute domain should be set to "finn"') + + # verify that "backend" is set to "fpgadataflow" + backend_value = self.get_nodeattr("backend") + if backend_value == "fpgadataflow": + info_messages.append("Attribute backend is set correctly") + else: + info_messages.append('Attribute backend should be set to "fpgadataflow"') + + # verify that all necessary attributes exist + # TODO collect automatically from get_nodeattr_types + try: + self.get_nodeattr("code_gen_dir_cppsim") + self.get_nodeattr("executable_path") + self.get_nodeattr("NumChannels") + self.get_nodeattr("PE") + self.get_nodeattr("inputDataType") + self.get_nodeattr("outputDataType") + info_messages.append("All necessary attributes exist") + except Exception: + info_messages.append( + """The required Threshold_Batch attributes do not exist.""" + ) + + return info_messages + + def bram_estimation(self): + """Calculates BRAM cost if resource set to BRAM""" + style = self.get_nodeattr("ram_style") + P = self.get_nodeattr("PE") + idt = self.get_input_datatype() + A = idt.bitwidth() + tmem = self.calc_tmem() + + if style == "block" and tmem > 1: + return int(ceil(A * P / 16)) * int(ceil(tmem / 1024)) + else: + return 0 + + def lut_estimation(self): + """Calculates LUT cost, taking memory resource type into account """ + # TODO add in/out FIFO contributions + style = self.get_nodeattr("ram_style") + P = self.get_nodeattr("PE") + idt = self.get_input_datatype() + A = idt.bitwidth() + tmem = self.calc_tmem() + # cost of comparators + comparator_cost = A * P + # cost of LUTRAM + if style == "distributed" and tmem > 1: + lutram_cost = P * A * int(ceil(tmem / 64)) + else: + lutram_cost = 0 + # total cost + return comparator_cost + lutram_cost + + def get_input_datatype(self): + """Returns FINN DataType of input.""" + return DataType[self.get_nodeattr("inputDataType")] + + def get_output_datatype(self): + """Returns FINN DataType of output.""" + return DataType[self.get_nodeattr("outputDataType")] + + def get_instream_width(self): + i_bits = self.get_input_datatype().bitwidth() + return i_bits * self.get_nodeattr("PE") + + def get_outstream_width(self): + o_bits = self.get_output_datatype().bitwidth() + return o_bits * self.get_nodeattr("PE") + + def get_folded_input_shape(self): + ich = self.get_nodeattr("NumChannels") + pe = self.get_nodeattr("PE") + fold = ich // pe + vecs = list(self.get_nodeattr("numInputVectors")) + folded_input_shape = tuple(vecs + [fold, pe]) + return folded_input_shape + + def get_folded_output_shape(self): + # same shape as input + return self.get_folded_input_shape() + + def get_normal_input_shape(self): + ich = self.get_nodeattr("NumChannels") + vecs = list(self.get_nodeattr("numInputVectors")) + normal_input_shape = tuple(vecs + [ich]) + return normal_input_shape + + def get_normal_output_shape(self): + # same shape as input + return self.get_normal_input_shape() + + def get_number_output_values(self): + nf = np.prod(self.get_folded_output_shape()[:-1]) + return nf + + def get_template_param_values(self): + """Returns the template parameter values according to input, output and weight + data types.""" + ret = dict() + inp_hls_str = self.get_input_datatype().get_hls_datatype_str() + out_hls_str = self.get_output_datatype().get_hls_datatype_str() + # fill in TSrcI + ret["TSrcI"] = "Slice<%s>" % inp_hls_str + # fill in TDstI + ret["TDstI"] = "Slice<%s>" % out_hls_str + + return ret + + def get_hls_compatible_threshold_tensor(self, orig_thres_matrix): + """Convert the original numpy weight matrix orig_weight_matrix into + a form suitable for passing to the hlslib call: + * ensure MH % PE == 0 + * for unsigned inputs, ensure thresholds are positive + * interleave rows between PEs + * reshape into (PE, TMEM, n_thres_steps) and return + """ + mh = self.get_nodeattr("NumChannels") + pe = self.get_nodeattr("PE") + tmem = mh // pe + assert mh % pe == 0, "Requirement NumChannels divisable by PE is violated." + assert ( + orig_thres_matrix.ndim == 2 + ), """Threshold matrix dimension is + not as expected (2).""" + n_thres_steps = orig_thres_matrix.shape[1] + if not self.get_input_datatype().signed(): + # ensure all thresholds are nonnegative + assert (orig_thres_matrix >= 0).all() + # ensure all thresholds are integer + assert (orig_thres_matrix.astype(np.int32) == orig_thres_matrix).all() + ret = orig_thres_matrix + # ensure channels = mh , duplicating if necessary + if ret.shape[0] == 1: + ret = np.tile(ret, (mh, 1)) + assert ( + ret.shape[0] == mh + ), "Channels of threshold matrix are not as expected (mh)" + # distribute rows between PEs + ret = interleave_matrix_outer_dim_from_partitions(ret, pe) + assert ( + ret.shape[0] == pe + ), """First dimension after distribution of the + rows between PEs is not as expected (pe)""" + assert ( + ret.shape[1] == tmem + ), """Second dimension after distribution of the + rows between PEs is not as expected (tmem)""" + assert ( + ret.shape[2] == n_thres_steps + ), """Third dimension after distribution of the + rows between PEs is not as expected (n_thres_steps)""" + return ret.reshape(1, pe, tmem, n_thres_steps) + + def generate_params(self, model, path): + code_gen_dir = path + # save thresholds in thresh.h + thresholds = model.get_initializer(self.onnx_node.input[1]) + + threshold_tensor = self.get_hls_compatible_threshold_tensor(thresholds) + tdt = DataType.INT32 + thresholds_hls_code = numpy_to_hls_code( + threshold_tensor, tdt, "thresholds", False, True + ) + # write thresholds into thresh.h + f_thresh = open("{}/thresh.h".format(code_gen_dir), "w") + tdt_hls = tdt.get_hls_datatype_str() + # use binary to export bipolar activations + export_odt = self.get_output_datatype() + if self.get_output_datatype() == DataType.BIPOLAR: + export_odt = DataType.BINARY + odt_hls = export_odt.get_hls_datatype_str() + f_thresh.write( + "static ThresholdsActivation<{},{},{},{},{},{},{}> threshs \ + = ".format( + self.calc_tmem(), + self.get_nodeattr("PE"), + threshold_tensor.shape[-1], + tdt_hls, + odt_hls, + export_odt.min(), + "std::less_equal<%s>" % tdt_hls, + ) + ) + f_thresh.write(thresholds_hls_code) + f_thresh.close() + + def execute_node(self, context, graph): + mode = self.get_nodeattr("exec_mode") + node = self.onnx_node + + # TODO ensure codegen dir exists + if mode == "cppsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + elif mode == "rtlsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + # create a npy file fore each input of the node (in_ind is input index) + in_ind = 0 + for inputs in node.input: + # it is assumed that the first input of the node is the data input + # the second input are the weights + # the third input are the thresholds + if in_ind == 0: + assert ( + str(context[inputs].dtype) == "float32" + ), """Input datatype is + not float32 as expected.""" + expected_inp_shape = self.get_folded_input_shape() + reshaped_input = context[inputs].reshape(expected_inp_shape) + if self.get_input_datatype() == DataType.BIPOLAR: + # store bipolar activations as binary + reshaped_input = (reshaped_input + 1) / 2 + export_idt = DataType.BINARY + else: + export_idt = self.get_input_datatype() + # make copy before saving the array + reshaped_input = reshaped_input.copy() + np.save( + os.path.join(code_gen_dir, "input_{}.npy".format(in_ind)), + reshaped_input, + ) + elif in_ind > 2: + raise Exception("Unexpected input found for StreamingFCLayer") + in_ind += 1 + + if mode == "cppsim": + # execute the precompiled model + super().exec_precompiled_singlenode_model() + # load output npy file + super().npy_to_dynamic_output(context) + # reinterpret binary output as bipolar where needed + if self.get_output_datatype() == DataType.BIPOLAR: + out = context[node.output[0]] + out = 2 * out - 1 + context[node.output[0]] = out + assert ( + context[node.output[0]].shape == self.get_folded_output_shape() + ), """Output shape is not as expected""" + # reshape output to have expected shape + oshape = self.get_normal_output_shape() + context[node.output[0]] = context[node.output[0]].reshape(*oshape) + elif mode == "rtlsim": + sim = self.get_rtlsim() + nbits = self.get_instream_width() + inp = npy_to_rtlsim_input( + "{}/input_0.npy".format(code_gen_dir), export_idt, nbits + ) + super().reset_rtlsim(sim) + super().toggle_clk(sim) + output = self.rtlsim(sim, inp) + odt = self.get_output_datatype() + target_bits = odt.bitwidth() + packed_bits = self.get_outstream_width() + out_npy_path = "{}/output.npy".format(code_gen_dir) + out_shape = self.get_folded_output_shape() + rtlsim_output_to_npy( + output, out_npy_path, odt, out_shape, packed_bits, target_bits + ) + + # load and reshape output + output = np.load(out_npy_path) + oshape = self.get_normal_output_shape() + output = np.asarray([output], dtype=np.float32).reshape(*oshape) + context[node.output[0]] = output + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + def global_includes(self): + self.code_gen_dict["$GLOBALS$"] = ['#include "activations.hpp"'] + self.code_gen_dict["$GLOBALS$"] += ['#include "thresh.h"'] + + # TODO check and add whatever missing + def defines(self, var): + numInputVectors = list(self.get_nodeattr("numInputVectors")) + numReps = numInputVectors[0] + self.code_gen_dict["$DEFINES$"] = [ + """#define NumChannels1 {}\n #define PE1 {}\n #define numReps {}""".format( + self.get_nodeattr("NumChannels"), self.get_nodeattr("PE"), numReps, + ) + ] + + def read_npy_data(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_input_datatype() + elem_bits = dtype.bitwidth() + packed_bits = self.get_instream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_in = "%s/input_0.npy" % code_gen_dir + self.code_gen_dict["$READNPYDATA$"] = [] + # note: the innermost dim is reversed for the input + self.code_gen_dict["$READNPYDATA$"].append( + 'npy2apintstream<%s, %s, %d, %s>("%s", in0, false);' + % (packed_hls_type, elem_hls_type, elem_bits, npy_type, npy_in) + ) + + def strm_decl(self): + self.code_gen_dict["$STREAMDECLARATIONS$"] = [] + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> in0 ("in0");'.format(self.get_instream_width()) + ) + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> out ("out");'.format(self.get_outstream_width()) + ) + + def docompute(self): + tmpl_args = self.get_template_param_values() + # TODO: why put some template parameters into defines and not others? + # should ImgDim be defined or just filled in here like we do now? + node = self.onnx_node + ishape = self.get_folded_input_shape() + if len(ishape) == 3: + imgdim = 1 + elif len(ishape) == 5: + imgdim = ishape[1] + else: + raise Exception("""Unexpeted input shape""") + self.code_gen_dict["$DOCOMPUTE$"] = [ + """{}<{}, NumChannels1, PE1, {}, {}> + (in0, out, threshs, numReps);""".format( + node.op_type, imgdim, tmpl_args["TSrcI"], tmpl_args["TDstI"], + ) + ] + + def dataoutstrm(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_output_datatype() + if dtype == DataType.BIPOLAR: + # use binary for bipolar storage + dtype = DataType.BINARY + elem_bits = dtype.bitwidth() + packed_bits = self.get_outstream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_out = "%s/output.npy" % code_gen_dir + shape = self.get_folded_output_shape() + shape_cpp_str = str(shape).replace("(", "{").replace(")", "}") + + # note: the innermost dim is not reversed for the output + self.code_gen_dict["$DATAOUTSTREAM$"] = [ + 'apintstream2npy<%s, %s, %d, %s>(out, %s, "%s", false);' + % ( + packed_hls_type, + elem_hls_type, + elem_bits, + npy_type, + shape_cpp_str, + npy_out, + ) + ] + + def save_as_npy(self): + self.code_gen_dict["$SAVEASCNPY$"] = [] + + def blackboxfunction(self): + self.code_gen_dict["$BLACKBOXFUNCTION$"] = [ + """void {}(hls::stream<ap_uint<{}>> &in0, + hls::stream<ap_uint<{}>> &out + )""".format( + self.onnx_node.name, + self.get_instream_width(), + self.get_outstream_width(), + ) + ] + + def pragmas(self): + self.code_gen_dict["$PRAGMAS$"] = ["#pragma HLS INTERFACE axis port=in0"] + self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out") + self.code_gen_dict["$PRAGMAS$"].append( + "#pragma HLS INTERFACE ap_ctrl_none port=return" + ) + + # the threshold tensor is acc_type [PE][TMEM][N_THRES] + # partition for parallel access along PE and N_THRES + # dimensions (dims 1 and 3) + self.code_gen_dict["$PRAGMAS$"].append( + ( + "#pragma HLS ARRAY_PARTITION variable=threshs.m_thresholds " + "complete dim=1" + ) + ) + self.code_gen_dict["$PRAGMAS$"].append( + ( + "#pragma HLS ARRAY_PARTITION variable=threshs.m_thresholds " + "complete dim=3" + ) + ) + # set resource type + ram_style = self.get_nodeattr("ram_style") + pe = self.get_nodeattr("PE") + ich = self.get_nodeattr("NumChannels") + # if PE less than NumChannels, assign cores according to ram_style; + # otherwise if PE == NumChannels, Vivado HLS will unroll to FFs + if pe < ich: + if ram_style == "distributed": + self.code_gen_dict["$PRAGMAS$"].append( + ( + "#pragma HLS RESOURCE variable=threshs.m_thresholds " + "core=ROM_2P_LUTRAM" + ) + ) + elif ram_style == "block": + self.code_gen_dict["$PRAGMAS$"].append( + ( + "#pragma HLS RESOURCE variable=threshs.m_thresholds " + "core=ROM_2P_BRAM" + ) + ) + else: + raise Exception( + """Invalid value for attribute ram_style! Is currently set to: {} + has to be set to one of ("block", "distributed")""".format( + ram_style + ) + ) diff --git a/src/finn/custom_op/registry.py b/src/finn/custom_op/registry.py index ac1f49ee26d1c23bd1b0e67ae4ba7e0c2b55b435..238829e03353d79fab7c51e7d1b9dca6e2a96a11 100644 --- a/src/finn/custom_op/registry.py +++ b/src/finn/custom_op/registry.py @@ -44,8 +44,11 @@ from finn.custom_op.fpgadataflow.streamingdatawidthconverter_batch import ( StreamingDataWidthConverter_Batch, ) from finn.custom_op.fpgadataflow.globalaccpool_batch import GlobalAccPool_Batch +from finn.custom_op.fpgadataflow.sameresize_batch import SameResize_Batch +from finn.custom_op.fpgadataflow.thresholding_batch import Thresholding_Batch from finn.custom_op.fpgadataflow.addstreams_batch import AddStreams_Batch from finn.custom_op.fpgadataflow.labelselect_batch import LabelSelect_Batch +from finn.custom_op.fpgadataflow.duplicatestreams_batch import DuplicateStreams_Batch # create a mapping of all known CustomOp names and classes custom_op = {} @@ -62,8 +65,11 @@ custom_op["MaxPoolNHWC"] = MaxPoolNHWC custom_op["StreamingDataWidthConverter_Batch"] = StreamingDataWidthConverter_Batch custom_op["StreamingFIFO"] = StreamingFIFO custom_op["GlobalAccPool_Batch"] = GlobalAccPool_Batch +custom_op["SameResize_Batch"] = SameResize_Batch +custom_op["Thresholding_Batch"] = Thresholding_Batch custom_op["AddStreams_Batch"] = AddStreams_Batch custom_op["LabelSelect_Batch"] = LabelSelect_Batch +custom_op["DuplicateStreams_Batch"] = DuplicateStreams_Batch def getCustomOp(node): diff --git a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py index dbd98623c4cdf5baca9fa9c137debf8be0f70981..3ff86cab48d365c10e69bc2c764e8083c6a36880 100644 --- a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py +++ b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py @@ -33,6 +33,7 @@ from finn.transformation import Transformation from finn.custom_op.registry import getCustomOp from finn.transformation.infer_shapes import InferShapes from finn.transformation.infer_datatypes import InferDataTypes +import finn.core.data_layout as DataLayout class InferConvInpGen(Transformation): @@ -398,3 +399,59 @@ class InferQuantizedStreamingFCLayer(Transformation): model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) return (model, graph_modified) + + +class InferThresholdingLayer(Transformation): + """Convert any MultiThreshold into a standalone thresholding HLS layer.""" + + def apply(self, model): + graph = model.graph + node_ind = 0 + graph_modified = False + for node in graph.node: + node_ind += 1 + if node.op_type == "MultiThreshold": + thl_input = node.input[0] + thl_threshold = node.input[1] + thl_output = node.output[0] + thl_in_shape = model.get_tensor_shape(thl_input) + idt = model.get_tensor_datatype(thl_input) + + # skip conversion for layers with float input + if not idt.is_integer(): + continue + + # skip conversion if input is not NHWC or NC + thl_in_layout = model.get_tensor_layout(thl_input) + if thl_in_layout != DataLayout.NHWC and thl_in_layout != DataLayout.NC: + continue + + # now safe to assume number of channels is in last dimension + ifc = int(thl_in_shape[-1]) + # create node with no parallelization first + pe = 1 + assert ifc % pe == 0, "Requirement IFC divisable by PE is violated." + + odt = model.get_tensor_datatype(thl_output) + # create and insert new StreamingFCLayer node + new_node = helper.make_node( + "Thresholding_Batch", + [thl_input, thl_threshold], + [thl_output], + domain="finn", + backend="fpgadataflow", + NumChannels=ifc, + PE=pe, + inputDataType=idt.name, + outputDataType=odt.name, + numInputVectors=list(thl_in_shape[:-1]), + ) + graph.node.insert(node_ind, new_node) + # remove old node + graph.node.remove(node) + graph_modified = True + + if graph_modified: + model = model.transform(InferShapes()) + model = model.transform(InferDataTypes()) + return (model, graph_modified) diff --git a/src/finn/transformation/general.py b/src/finn/transformation/general.py index 53c73e1dc4fe0bfab53e3f126add992cb338c11d..f51ffbcfd9f62e06bf4942409fbb163e92ff6370 100644 --- a/src/finn/transformation/general.py +++ b/src/finn/transformation/general.py @@ -81,6 +81,41 @@ class GiveReadableTensorNames(Transformation): return (model, False) +class GiveUniqueParameterTensors(Transformation): + """Make every parameter tensor unique. The aim is to avoid affecting + other nodes apart from the one the system is currently operating on.""" + + def apply(self, model): + graph = model.graph + graph_modified = False + seen_parameters = [] + for n in graph.node: + # copy inputs since they may be modified + node_inputs_list = [x for x in n.input] + for input_idx, node_input in enumerate(node_inputs_list): + # check if it's a parameter + input_init = model.get_initializer(node_input) + if input_init is None: + # dynamic input + continue + + # check if repeated + if node_input not in seen_parameters: + # first occurance + seen_parameters += [node_input] + continue + + new_param_name = model.make_new_valueinfo_name() + + model.set_initializer(new_param_name, input_init) + model.set_tensor_datatype(new_param_name, model.get_tensor_datatype(node_input)) + + # point node input to new tensor + n.input[input_idx] = new_param_name + + return (model, graph_modified) + + class ConvertSubToAdd(Transformation): """Convert subtract-a-constant nodes to add-a-constant nodes.""" diff --git a/src/finn/transformation/streamline/absorb.py b/src/finn/transformation/streamline/absorb.py index 0d709297a9132b15b51435b7ab4b51ce55c7e9f3..dbcf97361017144174f9fbfca35a84361b5abd26 100644 --- a/src/finn/transformation/streamline/absorb.py +++ b/src/finn/transformation/streamline/absorb.py @@ -46,7 +46,11 @@ class AbsorbAddIntoMultiThreshold(Transformation): graph_modified = False for n in graph.node: node_ind += 1 - if n.op_type == "Add": + if ( + n.op_type == "Add" + and not model.is_fork_node(n) + and not model.is_join_node(n) + ): consumer = model.find_consumer(n.output[0]) if consumer is not None and consumer.op_type == "MultiThreshold": add_weight_name = n.input[1] @@ -83,7 +87,11 @@ class AbsorbMulIntoMultiThreshold(Transformation): graph_modified = False for n in graph.node: node_ind += 1 - if n.op_type == "Mul": + if ( + n.op_type == "Mul" + and not model.is_fork_node(n) + and not model.is_join_node(n) + ): mul_weight_name = n.input[1] A = model.get_initializer(mul_weight_name) assert A is not None, "Initializer for mul weights is not set." diff --git a/src/finn/transformation/streamline/collapse_repeated.py b/src/finn/transformation/streamline/collapse_repeated.py index aa059747b602bc6b659bc8b53b1f18988bba1ef0..67824ad4f633983b93e3178d03118927a1ddd85b 100644 --- a/src/finn/transformation/streamline/collapse_repeated.py +++ b/src/finn/transformation/streamline/collapse_repeated.py @@ -48,9 +48,17 @@ class CollapseRepeatedOp(Transformation): graph_modified = False for n in graph.node: node_ind += 1 - if n.op_type == self.op_name: + if ( + n.op_type == self.op_name + and not model.is_fork_node(n) + and not model.is_join_node(n) + ): consumer = model.find_consumer(n.output[0]) - if consumer is not None and consumer.op_type == self.op_name: + if ( + consumer is not None + and consumer.op_type == self.op_name + and not model.is_join_node(consumer) + ): op0_param_name = n.input[1] op1_param_name = consumer.input[1] op0_param = model.get_initializer(op0_param_name) diff --git a/src/finn/transformation/streamline/reorder.py b/src/finn/transformation/streamline/reorder.py index 1886c785705161c3a13493de44dc3f3f86463f4f..0b6259a61d3eb67b7b38d4c6939019ce2893a875 100644 --- a/src/finn/transformation/streamline/reorder.py +++ b/src/finn/transformation/streamline/reorder.py @@ -36,8 +36,9 @@ from finn.util.basic import get_by_name class MoveAddPastMul(Transformation): - """Move add operations past multiply operations. The aim is to have them - next to each other such that they can be collapsed into a single add.""" + """Move add operations past multiply operations on linear segments of the graph. + The aim is to have them next to each other such that they can be collapsed into + a single add.""" def apply(self, model): graph = model.graph @@ -45,9 +46,17 @@ class MoveAddPastMul(Transformation): graph_modified = False for n in graph.node: node_ind += 1 - if n.op_type == "Add": + if ( + n.op_type == "Add" + and not model.is_fork_node(n) + and not model.is_join_node(n) + ): consumer = model.find_consumer(n.output[0]) - if consumer is not None and consumer.op_type == "Mul": + if ( + consumer is not None + and consumer.op_type == "Mul" + and not model.is_join_node(consumer) + ): # have: (x) -> add(,B) -> (x+B) -> mul(,A) -> (xA+BA) # want: (x) -> mul(,A) -> (xA) -> add(,BA) -> (xA+BA) # assume input 0 is from the previous layer, input 1 is the @@ -63,12 +72,16 @@ class MoveAddPastMul(Transformation): end_name = consumer.output[0] # compute new param value for add BA = B * A + # make and insert new nodes new_mul = oh.make_node( - "Mul", [start_name, mul_weight_name], [middle_name] + "Mul", + [start_name, mul_weight_name], + [middle_name], + name=consumer.name, ) new_add = oh.make_node( - "Add", [middle_name, add_weight_name], [end_name] + "Add", [middle_name, add_weight_name], [end_name], name=n.name ) graph.node.insert(node_ind, new_mul) graph.node.insert(node_ind + 1, new_add) @@ -78,6 +91,7 @@ class MoveAddPastMul(Transformation): graph.node.remove(n) graph.node.remove(consumer) graph_modified = True + model = model.transform(InferShapes()) return (model, graph_modified) @@ -92,9 +106,17 @@ class MoveScalarMulPastMatMul(Transformation): graph_modified = False for n in graph.node: node_ind += 1 - if n.op_type == "Mul": + if ( + n.op_type == "Mul" + and not model.is_fork_node(n) + and not model.is_join_node(n) + ): consumer = model.find_consumer(n.output[0]) - if consumer is not None and consumer.op_type == "MatMul": + if ( + consumer is not None + and consumer.op_type == "MatMul" + and not model.is_join_node(consumer) + ): mul_weight_name = n.input[1] matmul_weight_name = consumer.input[1] A = model.get_initializer(mul_weight_name) @@ -109,10 +131,16 @@ class MoveScalarMulPastMatMul(Transformation): # if the mul is scalar, we can simply swap the order of ops # make and insert new nodes new_matmul = oh.make_node( - "MatMul", [start_name, matmul_weight_name], [middle_name] + "MatMul", + [start_name, matmul_weight_name], + [middle_name], + name=consumer.name, ) new_mul = oh.make_node( - "Mul", [middle_name, mul_weight_name], [end_name] + "Mul", + [middle_name, mul_weight_name], + [end_name], + name=n.name, ) graph.node.insert(node_ind, new_matmul) graph.node.insert(node_ind + 1, new_mul) @@ -135,9 +163,17 @@ class MoveScalarAddPastMatMul(Transformation): graph_modified = False for n in graph.node: node_ind += 1 - if n.op_type == "Add": + if ( + n.op_type == "Add" + and not model.is_fork_node(n) + and not model.is_join_node(n) + ): consumer = model.find_consumer(n.output[0]) - if consumer is not None and consumer.op_type == "MatMul": + if ( + consumer is not None + and consumer.op_type == "MatMul" + and not model.is_join_node(consumer) + ): add_weight_name = n.input[1] matmul_weight_name = consumer.input[1] A = model.get_initializer(add_weight_name) @@ -155,10 +191,16 @@ class MoveScalarAddPastMatMul(Transformation): # update the add weight model.set_initializer(add_weight_name, Anew) new_matmul = oh.make_node( - "MatMul", [start_name, matmul_weight_name], [middle_name] + "MatMul", + [start_name, matmul_weight_name], + [middle_name], + name=consumer.name, ) new_add = oh.make_node( - "Add", [middle_name, add_weight_name], [end_name] + "Add", + [middle_name, add_weight_name], + [end_name], + name=n.name, ) graph.node.insert(node_ind, new_matmul) graph.node.insert(node_ind + 1, new_add) @@ -181,9 +223,17 @@ class MoveScalarAddPastConv(Transformation): graph_modified = False for n in graph.node: node_ind += 1 - if n.op_type == "Add": + if ( + n.op_type == "Add" + and not model.is_fork_node(n) + and not model.is_join_node(n) + ): consumer = model.find_consumer(n.output[0]) - if consumer is not None and consumer.op_type == "Conv": + if ( + consumer is not None + and consumer.op_type == "Conv" + and not model.is_join_node(consumer) + ): conv_node = consumer add_node = n add_weight_name = n.input[1] @@ -194,7 +244,12 @@ class MoveScalarAddPastConv(Transformation): start_name = n.input[0] end_name = consumer.output[0] conv_out_shape = model.get_tensor_shape(end_name) - if all(x == 1 for x in A.shape): + + using_padding = True + pads = list(get_by_name(consumer.attribute, "pads").ints) + if sum(pads) == 0: + using_padding = False + if all(x == 1 for x in A.shape) and not using_padding: # create a tensor filled with the add constant, in # the shape expected by the convolution conv_in_const = np.zeros(conv_in_shape, dtype=np.float32) @@ -206,7 +261,8 @@ class MoveScalarAddPastConv(Transformation): execute_node(conv_node, exec_ctx, model.graph) # retrieve the conv output Anew = exec_ctx[end_name] - # strip out repetition + + # strip out repetition if no padding Anew = Anew[0, :, 0, 0].reshape(1, -1, 1, 1) # update the add weight model.set_initializer(add_weight_name, Anew) @@ -224,6 +280,7 @@ class MoveScalarAddPastConv(Transformation): graph.node.remove(add_node) graph.node.insert(node_ind, add_node) graph_modified = True + model = model.transform(InferShapes()) return (model, graph_modified) @@ -238,9 +295,17 @@ class MoveScalarMulPastConv(Transformation): graph_modified = False for n in graph.node: node_ind += 1 - if n.op_type == "Mul": + if ( + n.op_type == "Mul" + and not model.is_fork_node(n) + and not model.is_join_node(n) + ): consumer = model.find_consumer(n.output[0]) - if consumer is not None and consumer.op_type == "Conv": + if ( + consumer is not None + and consumer.op_type == "Conv" + and not model.is_join_node(consumer) + ): mul_weight_name = n.input[1] A = model.get_initializer(mul_weight_name) assert A is not None, "Initializer for mul weights is not set." @@ -379,3 +444,90 @@ class MakeMaxPoolNHWC(Transformation): graph.node.insert(node_ind - 1, consumer) graph_modified = True return (model, graph_modified) + + +class MoveOpPastFork(Transformation): + """Move node operations past graph forks. Used when a node before a fork + can be merged with nodes in the branches + """ + + def __init__(self, op_name_list): + super().__init__() + self.ops_to_move = op_name_list + + def apply(self, model): + graph = model.graph + graph_modified = False + nodes = [n for n in graph.node] + node_ind = 0 + for n in nodes: + node_ind += 1 + if ( + n.op_type in self.ops_to_move + and model.is_fork_node(n) + and not model.is_join_node(n) + ): + + # Restrict this transform to operations with constant parameters + # Assuming parameters is in input 1 + op_init_param = model.get_initializer(n.input[1]) + if op_init_param is None: + continue + + # Check case when branches are empty and go + # to the same node + consumers = model.find_consumers(n.output[0]) + unique_consumer = True + for consum_node in consumers[1:]: + if consumers[0] != consum_node: + unique_consumer = False + break + + if unique_consumer: + continue + + for consumer_node in consumers[1:]: + # create new node + new_param_name = model.make_new_valueinfo_name() + new_output_tensor_name = model.make_new_valueinfo_name() + new_node = oh.make_node( + n.op_type, + [n.input[0], new_param_name], + [new_output_tensor_name], + ) + graph.node.insert(node_ind, new_node) + node_ind += 1 + model.set_initializer(new_param_name, op_init_param) + + # change consumer input tensor + graph.node.remove(consumer_node) + for idx, consumer_input in enumerate(consumer_node.input): + if consumer_input == n.output[0]: + consumer_node.input[idx] = new_output_tensor_name + break + else: + raise Exception( + "Consumer should have the current node output as input" + ) + + graph.node.insert(node_ind, consumer_node) + + graph_modified = True + + model = model.transform(InferShapes()) + return (model, graph_modified) + + +class MoveAddPastFork(MoveOpPastFork): + def __init__(self): + super().__init__(["Add"]) + + +class MoveMulPastFork(MoveOpPastFork): + def __init__(self): + super().__init__(["Mul"]) + + +class MoveLinearPastFork(MoveOpPastFork): + def __init__(self): + super().__init__(["Add", "Mul"]) diff --git a/src/finn/util/fpgadataflow.py b/src/finn/util/fpgadataflow.py index 9a2708439c0fed1e25c0d955af21cd2e9e705446..d1669444e55cb0fddb2690e51849c4603d47d32c 100644 --- a/src/finn/util/fpgadataflow.py +++ b/src/finn/util/fpgadataflow.py @@ -83,14 +83,27 @@ def pyverilate_stitched_ip(model): def file_to_dir(x): return os.path.dirname(os.path.realpath(x)) + def file_to_basename(x): + return os.path.basename(os.path.realpath(x)) + all_verilog_dirs = list(map(file_to_dir, all_verilog_srcs)) - top_verilog = model.get_metadata_prop("wrapper_filename") + all_verilog_files = list( + set( + filter( + lambda x: x.endswith(".v"), + list(map(file_to_basename, all_verilog_srcs)), + ) + ) + ) + top_module_name = model.get_metadata_prop("wrapper_filename") + top_module_name = file_to_basename(top_module_name).strip(".v") build_dir = make_build_dir("pyverilator_ipstitched_") sim = PyVerilator.build( - top_verilog, + all_verilog_files, verilog_path=all_verilog_dirs, build_dir=build_dir, trace_depth=get_rtlsim_trace_depth(), + top_module_name=top_module_name, ) return sim @@ -114,3 +127,91 @@ def is_fpgadataflow_node(node): is_node = True return is_node + + +def rtlsim_multi_io(sim, io_dict, num_out_values, trace_file=""): + """Runs the pyverilator simulation by passing the input values to the simulation, + toggle the clock and observing the execution time. Function contains also an + observation loop that can abort the simulation if no output value is produced + after a set number of cycles. Can handle multiple i/o streams. See function + implementation for details on how the top-level signals should be named. + + sim: the PyVerilator object for simulation + io_dict: a dict of dicts in the following format: + {"inputs" : {"in0" : <input_data>, "in1" : <input_data>}, + "outputs" : {"out0" : [], "out1" : []} } + <input_data> is a list of Python arbitrary-precision ints indicating + what data to push into the simulation, and the output lists are + similarly filled when the simulation is complete + num_out_values: number of total values to be read from the simulation to + finish the simulation and return. + + returns: number of clock cycles elapsed for completion + + """ + + if trace_file != "": + sim.start_vcd_trace(trace_file) + + for outp in io_dict["outputs"]: + sim.io[outp + "_V_V_TREADY"] = 1 + + # observe if output is completely calculated + # total_cycle_count will contain the number of cycles the calculation ran + output_done = False + total_cycle_count = 0 + output_count = 0 + old_output_count = 0 + + # avoid infinite looping of simulation by aborting when there is no change in + # output values after 100 cycles + no_change_count = 0 + liveness_threshold = pyverilate_get_liveness_threshold_cycles() + + while not (output_done): + for inp in io_dict["inputs"]: + inputs = io_dict["inputs"][inp] + sim.io[inp + "_V_V_TVALID"] = 1 if len(inputs) > 0 else 0 + sim.io[inp + "_V_V_TDATA"] = inputs[0] if len(inputs) > 0 else 0 + if sim.io[inp + "_V_V_TREADY"] == 1 and sim.io[inp + "_V_V_TVALID"] == 1: + inputs = inputs[1:] + io_dict["inputs"][inp] = inputs + + for outp in io_dict["outputs"]: + outputs = io_dict["outputs"][outp] + if sim.io[outp + "_V_V_TVALID"] == 1 and sim.io[outp + "_V_V_TREADY"] == 1: + outputs = outputs + [sim.io[outp + "_V_V_TDATA"]] + output_count += 1 + io_dict["outputs"][outp] = outputs + + sim.io.ap_clk = 1 + sim.io.ap_clk = 0 + + total_cycle_count = total_cycle_count + 1 + + if output_count == old_output_count: + no_change_count = no_change_count + 1 + else: + no_change_count = 0 + old_output_count = output_count + + # check if all expected output words received + if output_count == num_out_values: + output_done = True + + # end sim on timeout + if no_change_count == liveness_threshold: + if trace_file != "": + sim.flush_vcd_trace() + sim.stop_vcd_trace() + raise Exception( + "Error in simulation! Takes too long to produce output. " + "Consider setting the LIVENESS_THRESHOLD env.var. to a " + "larger value." + ) + + if trace_file != "": + sim.flush_vcd_trace() + sim.stop_vcd_trace() + + return total_cycle_count diff --git a/tests/core/test_modelwrapper.py b/tests/core/test_modelwrapper.py index d1da6934a5db07aabe41a9ca40b5de497b6460a1..4bd9385536bc6721c66726169dfa4c69e5f06772 100644 --- a/tests/core/test_modelwrapper.py +++ b/tests/core/test_modelwrapper.py @@ -127,3 +127,45 @@ def test_modelwrapper_graph_order(): assert model.get_node_index(Round_node) == 1 assert model.get_node_index(Ceil_node) == 2 assert model.get_node_index(Add_node) == 3 + + +def test_modelwrapper_detect_forks_n_joins(): + # create small network with properties to be tested + Neg_node = onnx.helper.make_node("Neg", inputs=["in1"], outputs=["neg1"]) + Round_node = onnx.helper.make_node("Round", inputs=["neg1"], outputs=["round1"]) + + Ceil_node = onnx.helper.make_node("Ceil", inputs=["neg1"], outputs=["ceil1"]) + Add_node = onnx.helper.make_node( + "Add", inputs=["round1", "ceil1"], outputs=["out1"] + ) + + in1 = onnx.helper.make_tensor_value_info("in1", onnx.TensorProto.FLOAT, [4, 4]) + out1 = onnx.helper.make_tensor_value_info("out1", onnx.TensorProto.FLOAT, [4, 4]) + + graph = onnx.helper.make_graph( + nodes=[Neg_node, Round_node, Ceil_node, Add_node], + name="simple_graph", + inputs=[in1], + outputs=[out1], + value_info=[ + onnx.helper.make_tensor_value_info("neg1", onnx.TensorProto.FLOAT, [4, 4]), + onnx.helper.make_tensor_value_info( + "round1", onnx.TensorProto.FLOAT, [4, 4] + ), + onnx.helper.make_tensor_value_info("ceil1", onnx.TensorProto.FLOAT, [4, 4]), + ], + ) + + onnx_model = onnx.helper.make_model(graph, producer_name="simple-model") + model = ModelWrapper(onnx_model) + + # test + assert model.is_fork_node(Neg_node) + assert not model.is_fork_node(Round_node) + assert not model.is_fork_node(Ceil_node) + assert not model.is_fork_node(Add_node) + + assert not model.is_join_node(Neg_node) + assert not model.is_join_node(Round_node) + assert not model.is_join_node(Ceil_node) + assert model.is_join_node(Add_node) diff --git a/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py b/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py index e03090f0581eebf68cac7baffb6888a6992df68d..48803c9614f53a3a149c6eaac4289d10086513a5 100644 --- a/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py +++ b/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py @@ -39,6 +39,7 @@ from finn.core.modelwrapper import ModelWrapper from finn.transformation.fold_constants import FoldConstants from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_data_layouts import InferDataLayouts from finn.transformation.streamline import Streamline from finn.util.test import get_test_model_trained from finn.transformation.double_to_single_float import DoubleToSingleFloat @@ -54,7 +55,9 @@ export_onnx_path_cnv = "test_output_cnv.onnx" @pytest.mark.vivado -def test_convert_to_hls_layers_cnv_w1a1(): +# Standalone or fused thresholding-based activation +@pytest.mark.parametrize("fused_activation", [True, False]) +def test_convert_to_hls_layers_cnv_w1a1(fused_activation): cnv = get_test_model_trained("CNV", 1, 1) bo.export_finn_onnx(cnv, (1, 3, 32, 32), export_onnx_path_cnv) model = ModelWrapper(export_onnx_path_cnv) @@ -69,6 +72,7 @@ def test_convert_to_hls_layers_cnv_w1a1(): model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold()) model = model.transform(ConvertBipolarMatMulToXnorPopcount()) model = model.transform(Streamline()) + model = model.transform(InferDataLayouts()) # model.save("golden.onnx") # load one of the test vectors fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz") @@ -80,6 +84,10 @@ def test_convert_to_hls_layers_cnv_w1a1(): expected_ctx = oxe.execute_onnx(model, input_dict, True) expected = expected_ctx[model.graph.output[0].name] + # if we infer thresholding first, all MultiThresholds get converted to HLS + # subsequently, the FC inference will generate passthrough MVAUs + if not fused_activation: + model = model.transform(to_hls.InferThresholdingLayer()) model = model.transform(to_hls.InferBinaryStreamingFCLayer()) model = model.transform(to_hls.InferQuantizedStreamingFCLayer()) for node in model.graph.node: @@ -102,7 +110,12 @@ def test_convert_to_hls_layers_cnv_w1a1(): model = model.transform(to_hls.InferStreamingMaxPool()) # check topology status finn_nodes = model.get_finn_nodes() - assert len(finn_nodes) == 18 + if fused_activation: + assert len(finn_nodes) == 18 + else: + assert len(finn_nodes) == 26 + thr_nodes = model.get_nodes_by_op_type("Thresholding_Batch") + assert len(thr_nodes) == 8 non_finn_nodes = model.get_non_finn_nodes() assert len(non_finn_nodes) == 4 exp_non_finn_nodes = ["Transpose", "Reshape", "Mul", "Add"] diff --git a/tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py b/tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py new file mode 100644 index 0000000000000000000000000000000000000000..4fb84be59333ef0e696204c9064fcf77e35b5d9b --- /dev/null +++ b/tests/fpgadataflow/test_fpgadataflow_duplicatestreams.py @@ -0,0 +1,127 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import pytest + +from onnx import TensorProto, helper + +import finn.core.onnx_exec as oxe +from finn.core.datatype import DataType +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.fpgadataflow.prepare_ip import PrepareIP +from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim +from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim +from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP +from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode +from finn.transformation.general import GiveUniqueNodeNames +from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim +from finn.util.basic import gen_finn_dt_tensor +from finn.transformation.fpgadataflow.replace_verilog_relpaths import ( + ReplaceVerilogRelPaths, +) + + +def make_dupstreams_modelwrapper(ch, pe, idim, idt): + shape = [1, idim, idim, ch] + inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, shape) + outp0 = helper.make_tensor_value_info("outp0", TensorProto.FLOAT, shape) + outp1 = helper.make_tensor_value_info("outp1", TensorProto.FLOAT, shape) + + dupstrm_node = helper.make_node( + "DuplicateStreams_Batch", + ["inp"], + ["outp0", "outp1"], + domain="finn", + backend="fpgadataflow", + NumChannels=ch, + PE=pe, + inputDataType=idt.name, + numInputVectors=[1, idim, idim], + ) + graph = helper.make_graph( + nodes=[dupstrm_node], name="graph", inputs=[inp], outputs=[outp0, outp1] + ) + + model = helper.make_model(graph, producer_name="addstreams-model") + model = ModelWrapper(model) + + model.set_tensor_datatype("inp", idt) + + return model + + +def prepare_inputs(input_tensor, idt): + return {"inp": input_tensor} + + +# data type +@pytest.mark.parametrize("idt", [DataType.INT4, DataType.UINT16]) +# channels +@pytest.mark.parametrize("ch", [64]) +# folding +@pytest.mark.parametrize("fold", [-1, 2, 1]) +# image dimension +@pytest.mark.parametrize("imdim", [7]) +# execution mode +@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) +@pytest.mark.vivado +def test_fpgadataflow_duplicatestreams(idt, ch, fold, imdim, exec_mode): + if fold == -1: + pe = 1 + else: + pe = ch // fold + assert ch % pe == 0 + + # generate input data + x = gen_finn_dt_tensor(idt, (1, imdim, imdim, ch)) + + model = make_dupstreams_modelwrapper(ch, pe, imdim, idt) + + if exec_mode == "cppsim": + model = model.transform(PrepareCppSim()) + model = model.transform(CompileCppSim()) + model = model.transform(SetExecMode("cppsim")) + elif exec_mode == "rtlsim": + model = model.transform(SetExecMode("rtlsim")) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(PrepareIP("xc7z020clg400-1", 5)) + model = model.transform(HLSSynthIP()) + model = model.transform(ReplaceVerilogRelPaths()) + model = model.transform(PrepareRTLSim()) + else: + raise Exception("Unknown exec_mode") + + # prepare input data and execute + input_dict = prepare_inputs(x, idt) + output_dict = oxe.execute_onnx(model, input_dict) + y0 = output_dict["outp0"] + y1 = output_dict["outp1"] + expected_y = x + + assert (y0 == expected_y).all(), exec_mode + " failed" + assert (y1 == expected_y).all(), exec_mode + " failed" diff --git a/tests/fpgadataflow/test_fpgadataflow_sameresize.py b/tests/fpgadataflow/test_fpgadataflow_sameresize.py new file mode 100644 index 0000000000000000000000000000000000000000..ea6130c3891443595b038460233ebb85799ac461 --- /dev/null +++ b/tests/fpgadataflow/test_fpgadataflow_sameresize.py @@ -0,0 +1,125 @@ +import pytest +import os +import numpy as np + +from onnx import TensorProto, helper +from finn.core.datatype import DataType +from finn.core.modelwrapper import ModelWrapper +from finn.util.basic import gen_finn_dt_tensor +import finn.core.onnx_exec as oxe +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode +from finn.transformation.general import GiveUniqueNodeNames +from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim +from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim +from finn.transformation.fpgadataflow.prepare_ip import PrepareIP +from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP +from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim + +from finn.util.basic import pynq_part_map + +test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1") +test_fpga_part = pynq_part_map[test_pynq_board] +target_clk_ns = 10 + + +def make_single_sameresize_modelwrapper( + idim, odim, kdim, stride, num_ch, idt, pad_style +): + inp = helper.make_tensor_value_info( + "inp", TensorProto.FLOAT, [1, idim, idim, num_ch] + ) + outp = helper.make_tensor_value_info( + "outp", TensorProto.FLOAT, [1, odim, odim, num_ch] + ) + + SameResize_node = helper.make_node( + "SameResize_Batch", + ["inp"], + ["outp"], + domain="finn", + backend="fpgadataflow", + ImgDim=idim, + KernelDim=kdim, + Stride=stride, + NumChannels=num_ch, + inputDataType=str(idt.name), + PaddingStyle=pad_style, + ) + + graph = helper.make_graph( + nodes=[SameResize_node], name="sameresize_graph", inputs=[inp], outputs=[outp] + ) + + model = helper.make_model(graph, producer_name="sameresize-model") + model = ModelWrapper(model) + + model.set_tensor_datatype("inp", idt) + model.set_tensor_datatype("outp", idt) + + return model + + +# image dimension +@pytest.mark.parametrize("idim", [8, 16]) +# kernel dimension +@pytest.mark.parametrize("kdim", [2, 3]) +# stride +@pytest.mark.parametrize("stride", [1, 2]) +# number of channels +@pytest.mark.parametrize("num_ch", [1, 2]) +# FINN input datatype +@pytest.mark.parametrize("idt", [DataType.INT2, DataType.INT4]) +# execution mode +@pytest.mark.parametrize("mode", ["cppsim", "rtlsim"]) +@pytest.mark.slow +@pytest.mark.vivado +def test_fpgadataflow_sameresize(idim, kdim, stride, num_ch, idt, mode): + pad_style = 2 + assert idim % stride == 0, "Stride must divide input dimension." + # number of "same" windows over the input data + same_windows = idim // stride + odim = kdim + stride * (same_windows - 1) + + # generate input data + x = gen_finn_dt_tensor(idt, [1, idim, idim, num_ch]) + input_dict = {"inp": x} + + model = make_single_sameresize_modelwrapper( + idim, odim, kdim, stride, num_ch, idt, pad_style + ) + model = model.transform(InferShapes()) + model = model.transform(SetExecMode(mode)) + model = model.transform(GiveUniqueNodeNames()) + if mode == "cppsim": + model = model.transform(PrepareCppSim()) + model = model.transform(CompileCppSim()) + elif mode == "rtlsim": + model = model.transform(PrepareIP(test_fpga_part, target_clk_ns)) + model = model.transform(HLSSynthIP()) + model = model.transform(PrepareRTLSim()) + y_produced = oxe.execute_onnx(model, input_dict)["outp"] + expected_oshape = (1, odim, odim, num_ch) + assert y_produced.shape == expected_oshape + + # calculate reference + # calculate correct padding according to parameters + pad = odim - idim + if pad_style == 2: + if pad % 2 == 0: + pad_up = pad // 2 + pad_left = pad // 2 + else: + pad_up = pad // 2 + 1 + pad_left = pad // 2 + 1 + else: + pad_up = pad // 2 + pad_left = pad // 2 + pad_down = pad - pad_up + pad_right = pad - pad_left + + y_expected = np.pad( + x, ((0, 0), (pad_up, pad_down), (pad_left, pad_right), (0, 0)), "constant" + ) + + assert (y_produced == y_expected).all() diff --git a/tests/fpgadataflow/test_fpgadataflow_thresholding.py b/tests/fpgadataflow/test_fpgadataflow_thresholding.py new file mode 100644 index 0000000000000000000000000000000000000000..50b990f13494f22e985406791445b406e9946147 --- /dev/null +++ b/tests/fpgadataflow/test_fpgadataflow_thresholding.py @@ -0,0 +1,154 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import pytest + +import numpy as np +from onnx import TensorProto, helper + +import finn.core.onnx_exec as oxe +from finn.analysis.fpgadataflow.hls_synth_res_estimation import hls_synth_res_estimation +from finn.core.datatype import DataType +from finn.core.modelwrapper import ModelWrapper +from finn.custom_op.multithreshold import multithreshold +from finn.transformation.fpgadataflow.prepare_ip import PrepareIP +from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim +from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim +from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP +from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode +from finn.transformation.general import GiveUniqueNodeNames +from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim +from finn.util.basic import gen_finn_dt_tensor +from finn.transformation.fpgadataflow.replace_verilog_relpaths import ( + ReplaceVerilogRelPaths, +) + + +def make_single_thresholding_modelwrapper(T, pe, idt, odt): + NumChannels = T.shape[0] + + inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [1, NumChannels]) + outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [1, NumChannels]) + + node_inp_list = ["inp", "thresh"] + + Thresholding_node = helper.make_node( + "Thresholding_Batch", + node_inp_list, + ["outp"], + domain="finn", + backend="fpgadataflow", + NumChannels=NumChannels, + PE=pe, + inputDataType=idt.name, + outputDataType=odt.name, + ) + graph = helper.make_graph( + nodes=[Thresholding_node], + name="thresholding_graph", + inputs=[inp], + outputs=[outp], + ) + + model = helper.make_model(graph, producer_name="thresholding-model") + model = ModelWrapper(model) + + model.set_tensor_datatype("inp", idt) + model.set_tensor_datatype("outp", odt) + + model.set_tensor_datatype("thresh", idt) + model.set_initializer("thresh", T) + return model + + +# activation: None or DataType +@pytest.mark.parametrize("act", [DataType.INT4, DataType.BIPOLAR]) +# input datatype +@pytest.mark.parametrize("idt", [DataType.INT16, DataType.UINT16]) +# folding, -1 is maximum possible +@pytest.mark.parametrize("nf", [-1, 2, 1]) +# number of input features +@pytest.mark.parametrize("ich", [16]) +# execution mode +@pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) +@pytest.mark.vivado +@pytest.mark.slow +def test_fpgadataflow_thresholding(idt, act, nf, ich, exec_mode): + if nf == -1: + nf = ich + pe = ich // nf + assert ich % pe == 0 + + # generate input data + x = gen_finn_dt_tensor(idt, (1, ich)) + + odt = act + n_steps = act.get_num_possible_values() - 1 + T = np.random.randint(idt.min(), idt.max() + 1, (ich, n_steps)).astype(np.float32) + # provide non-decreasing thresholds + T = np.sort(T, axis=1) + + model = make_single_thresholding_modelwrapper(T, pe, idt, odt) + + if exec_mode == "cppsim": + model = model.transform(PrepareCppSim()) + model = model.transform(CompileCppSim()) + model = model.transform(SetExecMode("cppsim")) + elif exec_mode == "rtlsim": + model = model.transform(SetExecMode("rtlsim")) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(PrepareIP("xc7z020clg400-1", 5)) + model = model.transform(HLSSynthIP()) + model = model.transform(ReplaceVerilogRelPaths()) + model = model.transform(PrepareRTLSim()) + else: + raise Exception("Unknown exec_mode") + + # package input data as dictionary + input_dict = {"inp": x} + + y = multithreshold(x, T) + if act == DataType.BIPOLAR: + # binary to bipolar + y = 2 * y - 1 + else: + # signed offset + y += act.min() + + oshape = model.get_tensor_shape("outp") + y_expected = y.reshape(oshape) + # execute model + y_produced = oxe.execute_onnx(model, input_dict)["outp"] + + y_produced = y_produced.reshape(y_expected.shape) + + assert (y_produced == y_expected).all(), "cppsim failed" + + if exec_mode == "rtlsim": + hls_synt_res_est = model.analysis(hls_synth_res_estimation) + assert "Thresholding_Batch_0" in hls_synt_res_est diff --git a/tests/transformation/test_collapse_repeated_op.py b/tests/transformation/test_collapse_repeated_op.py index 01d932ece0be4b0beb7ad6094284ec3efb1e525e..b74d868f9b921c35ff9f596c811583f45f761374 100644 --- a/tests/transformation/test_collapse_repeated_op.py +++ b/tests/transformation/test_collapse_repeated_op.py @@ -34,6 +34,7 @@ import finn.core.onnx_exec as ox from finn.core.modelwrapper import ModelWrapper from finn.transformation.infer_shapes import InferShapes from finn.transformation.streamline import CollapseRepeatedAdd, CollapseRepeatedMul +import pytest def test_collapse_repeated_op(): @@ -67,3 +68,60 @@ def test_collapse_repeated_op(): new_model = new_model.transform(CollapseRepeatedMul()) inp_dict = {"top_in": np.asarray([-1.0, 1.0], dtype=np.float32)} assert ox.compare_execution(model, new_model, inp_dict) + assert len(new_model.graph.node) == 2 + assert new_model.graph.node[0].op_type == "Add" + assert new_model.graph.node[1].op_type == "Mul" + + +@pytest.mark.parametrize( + "test_args", [("Add", CollapseRepeatedAdd()), ("Mul", CollapseRepeatedMul())], +) +def test_collapse_repeated_only_if_linear(test_args): + scalar_op = test_args[0] + transf_fxn = test_args[1] + + input_shape = [4, 4] + output_shape = input_shape + + top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape) + top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, output_shape) + + value_info = [oh.make_tensor_value_info("p1", TensorProto.FLOAT, [1])] + value_info += [oh.make_tensor_value_info("p2", TensorProto.FLOAT, [1])] + value_info += [oh.make_tensor_value_info("p3", TensorProto.FLOAT, [1])] + value_info += [oh.make_tensor_value_info("p4", TensorProto.FLOAT, [1])] + value_info += [oh.make_tensor_value_info("p5", TensorProto.FLOAT, [1])] + + modelproto = oh.make_model( + oh.make_graph( + name="test", + inputs=[top_in], + outputs=[top_out], + value_info=value_info, + nodes=[ + oh.make_node(scalar_op, ["top_in", "p2"], ["t1"]), + oh.make_node(scalar_op, ["t1", "p1"], ["t2"]), + oh.make_node(scalar_op, ["t2", "p3"], ["t3"]), + oh.make_node(scalar_op, ["t2", "p4"], ["t4"]), + oh.make_node(scalar_op, ["t3", "t4"], ["t5"]), + oh.make_node(scalar_op, ["t5", "p5"], ["top_out"]), + ], + ) + ) + model = ModelWrapper(modelproto) + model = model.transform(InferShapes()) + + np.random.seed(0) + model.set_initializer("p1", *np.random.rand(1).astype(np.float32)) + model.set_initializer("p2", *np.random.rand(1).astype(np.float32)) + model.set_initializer("p3", *np.random.rand(1).astype(np.float32)) + model.set_initializer("p4", *np.random.rand(1).astype(np.float32)) + model.set_initializer("p5", *np.random.rand(1).astype(np.float32)) + + # Transform + new_model = model.transform(transf_fxn) + + # Test + inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)} + assert ox.compare_execution(model, new_model, inp_dict) + assert len(new_model.graph.node) == 5 diff --git a/tests/transformation/test_general_transformation.py b/tests/transformation/test_general_transformation.py index 33b6041a170f3c0de8f741ef3ecb28682f6429ea..153af378eb3e07d5824f114fd194730048fb4953 100644 --- a/tests/transformation/test_general_transformation.py +++ b/tests/transformation/test_general_transformation.py @@ -31,6 +31,12 @@ from pkgutil import get_data from finn.core.modelwrapper import ModelWrapper from finn.transformation.general import GiveUniqueNodeNames +import numpy as np +import onnx +import finn.core.onnx_exec as oxe +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.general import GiveUniqueParameterTensors + def test_give_unique_node_names(): raw_m = get_data("finn", "data/onnx/mnist-conv/model.onnx") @@ -39,3 +45,76 @@ def test_give_unique_node_names(): assert model.graph.node[0].name == "Reshape_0" assert model.graph.node[1].name == "Conv_0" assert model.graph.node[11].name == "Add_2" + + +def test_give_unique_parameter_tensors(): + + # Create model + input_shape = [4, 4] + in1 = onnx.helper.make_tensor_value_info("in1", onnx.TensorProto.FLOAT, input_shape) + out1 = onnx.helper.make_tensor_value_info( + "out1", onnx.TensorProto.FLOAT, input_shape + ) + + graph_nodes = [] + graph_nodes += [ + onnx.helper.make_node("Add", inputs=["in1", "param1"], outputs=["t1"]) + ] + + graph_nodes += [ + onnx.helper.make_node("Sum", inputs=["t1", "param1", "param1"], outputs=["t2"]) + ] + + graph_nodes += [ + onnx.helper.make_node("Sum", inputs=["t2", "param2", "param1"], outputs=["t3"]) + ] + + graph_nodes += [ + onnx.helper.make_node("Add", inputs=["t3", "param1"], outputs=["out1"]) + ] + + onnx_graph = onnx.helper.make_graph( + nodes=graph_nodes, name="simple_graph", inputs=[in1], outputs=[out1], + ) + + onnx_model = onnx.helper.make_model(onnx_graph, producer_name="simple-model") + model = ModelWrapper(onnx_model) + + # Set param values + np.random.seed(0) + param1 = np.random.rand(*input_shape).astype(np.float32) + param2 = np.random.rand(*input_shape).astype(np.float32) + model.set_initializer("param1", param1) + model.set_initializer("param2", param2) + model = model.transform(InferShapes()) + + # Apply transformation + new_model = model.transform(GiveUniqueParameterTensors()) + new_model = new_model.transform(InferShapes()) + + # Test + # Breaks the model? + input_tensor = np.random.rand(*input_shape).astype(np.float32) + input_dict = {"in1": input_tensor} + + # run original + expected_context = oxe.execute_onnx(model, input_dict) + expected_output = expected_context[model.graph.output[0].name] + + # run modified + produced_context = oxe.execute_onnx(new_model, input_dict) + produced_output = produced_context[new_model.graph.output[0].name] + + assert np.isclose( + expected_output, produced_output, atol=1e-8 + ).all(), " GiveUniqueParameterTensors() transform breaks the model" + + # Does the job? + param_set = set() + param_cnt = 0 + for n in new_model.graph.node: + for i in range(1, len(n.input)): + param_set |= {n.input[i]} + param_cnt += 1 + + assert len(param_set) == param_cnt, " There are still parameters reused" diff --git a/tests/transformation/test_move_add_past_mul.py b/tests/transformation/test_move_add_past_mul.py index a0516d6fb2ff985fc112185ce99ad8facd841caf..163b9d310a5f12bd0b854f9aa46f53a549bf109e 100644 --- a/tests/transformation/test_move_add_past_mul.py +++ b/tests/transformation/test_move_add_past_mul.py @@ -60,6 +60,9 @@ def test_move_add_past_mul_single(): new_model = model.transform(MoveAddPastMul()) inp_dict = {"top_in": np.asarray([-1.0, 1.0], dtype=np.float32)} assert ox.compare_execution(model, new_model, inp_dict) + assert new_model.graph.node[0].op_type == "Mul" + assert new_model.graph.node[1].op_type == "Add" + assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0] def test_move_add_past_mul_multi(): @@ -92,3 +95,50 @@ def test_move_add_past_mul_multi(): new_model = model.transform(MoveAddPastMul()) inp_dict = {"top_in": np.asarray([-1.0, 1.0], dtype=np.float32)} assert ox.compare_execution(model, new_model, inp_dict) + assert new_model.graph.node[0].op_type == "Mul" + assert new_model.graph.node[1].op_type == "Mul" + assert new_model.graph.node[2].op_type == "Add" + assert new_model.graph.node[3].op_type == "Add" + for i in range(len(new_model.graph.node) - 1): + assert new_model.graph.node[i].output[0] == new_model.graph.node[i + 1].input[0] + + +def test_move_add_past_mul_only_if_linear(): + top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, [2]) + top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, [2]) + + value_info = [oh.make_tensor_value_info("add1_param", TensorProto.FLOAT, [1])] + value_info += [oh.make_tensor_value_info("mul1_param", TensorProto.FLOAT, [1])] + value_info += [oh.make_tensor_value_info("mul2_param", TensorProto.FLOAT, [1])] + value_info += [oh.make_tensor_value_info("mul3_param", TensorProto.FLOAT, [1])] + modelproto = oh.make_model( + oh.make_graph( + name="test", + inputs=[top_in], + outputs=[top_out], + value_info=value_info, + nodes=[ + oh.make_node("Add", ["top_in", "add1_param"], ["t1"]), + oh.make_node("Mul", ["t1", "mul1_param"], ["fork"]), + oh.make_node("Mul", ["fork", "mul2_param"], ["t3"]), + oh.make_node("Add", ["t3", "fork"], ["t4"]), + oh.make_node("Mul", ["t4", "mul3_param"], ["top_out"]), + ], + ) + ) + model = ModelWrapper(modelproto) + model = model.transform(InferShapes()) + + np.random.seed(0) + model.set_initializer("add1_param", np.random.rand(2).astype(np.float32)) + model.set_initializer("mul1_param", np.random.rand(2).astype(np.float32)) + model.set_initializer("mul2_param", np.random.rand(2).astype(np.float32)) + model.set_initializer("mul3_param", np.random.rand(2).astype(np.float32)) + new_model = model.transform(MoveAddPastMul()) + inp_dict = {"top_in": np.random.rand(2).astype(np.float32)} + assert ox.compare_execution(model, new_model, inp_dict) + assert new_model.graph.node[0].op_type == "Mul" + assert new_model.graph.node[1].op_type == "Add" + assert new_model.graph.node[2].op_type == "Mul" + assert new_model.graph.node[3].op_type == "Add" + assert new_model.graph.node[4].op_type == "Mul" diff --git a/tests/transformation/test_move_past_fork.py b/tests/transformation/test_move_past_fork.py new file mode 100644 index 0000000000000000000000000000000000000000..f3d37bd60c9e2580ca4499daafa8693f39fec810 --- /dev/null +++ b/tests/transformation/test_move_past_fork.py @@ -0,0 +1,79 @@ +from onnx import TensorProto, helper +import numpy as np + +import finn.core.onnx_exec as oxe +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.streamline.reorder import MoveLinearPastFork +from finn.transformation.infer_shapes import InferShapes + +import pytest + + +@pytest.mark.parametrize("ch", [64, 1]) +# ifmdim +@pytest.mark.parametrize("ifmdim", [-1, 7]) +def test_move_past_fork(ch, ifmdim): + # generate test vectors of correct shape + if ifmdim == -1: + input_shape = (1, ch) + else: + input_shape = (1, ch, ifmdim, ifmdim) + + top_in = helper.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape) + top_out = helper.make_tensor_value_info("top_out", TensorProto.FLOAT, input_shape) + + num_of_params = 8 + value_info = [] + for i in range(num_of_params): + value_info += [ + helper.make_tensor_value_info("p" + str(i), TensorProto.FLOAT, input_shape) + ] + + add_1_to_move = helper.make_node("Add", ["top_in", "p0"], ["fork1"]) + mul_1_to_move = helper.make_node("Mul", ["t5", "p4"], ["fork2"]) + add_2_to_move = helper.make_node("Add", ["fork2", "p5"], ["t6"]) + mul_1_not_to_move = helper.make_node("Mul", ["t8", "p7"], ["fork3"]) + modelproto = helper.make_model( + helper.make_graph( + name="test", + inputs=[top_in], + outputs=[top_out], + value_info=value_info, + nodes=[ + # fork1 + add_1_to_move, + helper.make_node("Mul", ["fork1", "p1"], ["t2"]), + helper.make_node("Mul", ["fork1", "p2"], ["t3"]), + helper.make_node("Add", ["t2", "t3"], ["t4"]), + helper.make_node("Add", ["t4", "p3"], ["t5"]), + # fork2 + mul_1_to_move, + add_2_to_move, + helper.make_node("Add", ["fork2", "p6"], ["t7"]), + helper.make_node("Add", ["t6", "t7"], ["t8"]), + # empty branches: do nothing + mul_1_not_to_move, + helper.make_node("Add", ["fork3", "fork3"], ["top_out"]), + ], + ) + ) + model = ModelWrapper(modelproto) + model = model.transform(InferShapes()) + + np.random.seed(0) + for i in range(num_of_params): + model.set_initializer( + "p" + str(i), np.random.rand(*input_shape).astype(np.float32) + ) + + # Transform + new_model = model.transform(MoveLinearPastFork()) + inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)} + + # Test + assert oxe.compare_execution(model, new_model, inp_dict) + assert not new_model.is_fork_node(add_1_to_move) + assert not new_model.is_fork_node(mul_1_to_move) + assert not new_model.is_fork_node(add_2_to_move) + assert new_model.is_fork_node(mul_1_not_to_move) + assert len(new_model.graph.node) == 14 diff --git a/tests/transformation/test_move_scalar_past_conv.py b/tests/transformation/test_move_scalar_past_conv.py new file mode 100644 index 0000000000000000000000000000000000000000..0f50642d2b9d1583030630cb4927c2b86667e71a --- /dev/null +++ b/tests/transformation/test_move_scalar_past_conv.py @@ -0,0 +1,166 @@ +import numpy as np +import onnx.helper as oh +import pytest +from onnx import TensorProto + +import finn.core.onnx_exec as ox +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.streamline import ( + MoveScalarAddPastConv, + MoveScalarMulPastConv, +) + + +@pytest.mark.parametrize("padding", [False, True]) +@pytest.mark.parametrize( + "test_args", [("Add", MoveScalarAddPastConv()), ("Mul", MoveScalarMulPastConv())], +) +def test_move_scalar_past_conv(test_args, padding): + scalar_op = test_args[0] + transf_fxn = test_args[1] + + in_feature_dim = 7 + in_chn = 3 + + stages = 2 + kernel_size = 3 + + out_feature_dim = ( + in_feature_dim if padding else in_feature_dim - (kernel_size // 2 * 2) * stages + ) + + input_shape = [1, in_chn, in_feature_dim, in_feature_dim] + output_shape = [1, in_chn, out_feature_dim, out_feature_dim] + + conv_param_shape = [in_chn, in_chn, kernel_size, kernel_size] + + conv_config = {} + conv_config["dilations"] = [1, 1] + conv_config["group"] = 1 + conv_config["kernel_shape"] = [kernel_size, kernel_size] + if padding: + conv_config["pads"] = [1, 1, 1, 1] + else: + conv_config["pads"] = [0, 0, 0, 0] + conv_config["strides"] = [1, 1] + + top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape) + top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, output_shape) + + value_info = [oh.make_tensor_value_info("p1", TensorProto.FLOAT, [1])] + value_info += [oh.make_tensor_value_info("p2", TensorProto.FLOAT, conv_param_shape)] + value_info += [oh.make_tensor_value_info("p3", TensorProto.FLOAT, conv_param_shape)] + + modelproto = oh.make_model( + oh.make_graph( + name="test", + inputs=[top_in], + outputs=[top_out], + value_info=value_info, + nodes=[ + oh.make_node(scalar_op, ["top_in", "p1"], ["t1"]), + oh.make_node("Conv", ["t1", "p2"], ["t2"], **conv_config), + oh.make_node("Conv", ["t2", "p3"], ["top_out"], **conv_config), + ], + ) + ) + model = ModelWrapper(modelproto) + model = model.transform(InferShapes()) + + np.random.seed(0) + model.set_initializer("p1", *np.random.rand(1).astype(np.float32)) + model.set_initializer("p2", np.random.rand(*conv_param_shape).astype(np.float32)) + model.set_initializer("p3", np.random.rand(*conv_param_shape).astype(np.float32)) + new_model = model.transform(transf_fxn) + inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)} + + assert ox.compare_execution(model, new_model, inp_dict) + if scalar_op == "Add": + if padding: + assert new_model.graph.node[0].op_type == scalar_op + assert new_model.graph.node[1].op_type == "Conv" + assert new_model.graph.node[2].op_type == "Conv" + else: + assert new_model.graph.node[0].op_type == "Conv" + assert new_model.graph.node[1].op_type == scalar_op + assert new_model.graph.node[2].op_type == "Conv" + else: + assert new_model.graph.node[0].op_type == "Conv" + assert new_model.graph.node[1].op_type == "Conv" + assert new_model.graph.node[2].op_type == scalar_op + + +@pytest.mark.parametrize( + "test_args", [("Add", MoveScalarAddPastConv()), ("Mul", MoveScalarMulPastConv())], +) +def test_move_scalar_past_conv_only_if_linear(test_args): + scalar_op = test_args[0] + transf_fxn = test_args[1] + + in_feature_dim = 7 + in_chn = 1 + padding = False + stages = 3 + kernel_size = 3 + + out_feature_dim = ( + in_feature_dim if padding else in_feature_dim - (kernel_size // 2 * 2) * stages + ) + + input_shape = [1, in_chn, in_feature_dim, in_feature_dim] + output_shape = [1, in_chn, out_feature_dim, out_feature_dim] + + conv_param_shape = [in_chn, in_chn, kernel_size, kernel_size] + + conv_config = {} + conv_config["dilations"] = [1, 1] + conv_config["group"] = 1 + conv_config["kernel_shape"] = [kernel_size, kernel_size] + conv_config["pads"] = [0, 0, 0, 0] + conv_config["strides"] = [1, 1] + + top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape) + top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, output_shape) + + value_info = [oh.make_tensor_value_info("p1", TensorProto.FLOAT, [1])] + value_info += [oh.make_tensor_value_info("p2", TensorProto.FLOAT, conv_param_shape)] + value_info += [oh.make_tensor_value_info("p3", TensorProto.FLOAT, conv_param_shape)] + value_info += [oh.make_tensor_value_info("p4", TensorProto.FLOAT, conv_param_shape)] + value_info += [oh.make_tensor_value_info("p5", TensorProto.FLOAT, conv_param_shape)] + + modelproto = oh.make_model( + oh.make_graph( + name="test", + inputs=[top_in], + outputs=[top_out], + value_info=value_info, + nodes=[ + oh.make_node("Conv", ["top_in", "p2"], ["t1"], **conv_config), + oh.make_node(scalar_op, ["t1", "p1"], ["t2"]), + oh.make_node("Conv", ["t2", "p3"], ["t3"], **conv_config), + oh.make_node("Conv", ["t2", "p4"], ["t4"], **conv_config), + oh.make_node(scalar_op, ["t3", "t4"], ["t5"]), + oh.make_node("Conv", ["t5", "p5"], ["top_out"], **conv_config), + ], + ) + ) + model = ModelWrapper(modelproto) + model = model.transform(InferShapes()) + + np.random.seed(0) + model.set_initializer("p1", *np.random.rand(1).astype(np.float32)) + model.set_initializer("p2", np.random.rand(*conv_param_shape).astype(np.float32)) + model.set_initializer("p3", np.random.rand(*conv_param_shape).astype(np.float32)) + model.set_initializer("p4", np.random.rand(*conv_param_shape).astype(np.float32)) + model.set_initializer("p5", np.random.rand(*conv_param_shape).astype(np.float32)) + new_model = model.transform(transf_fxn) + inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)} + + assert ox.compare_execution(model, new_model, inp_dict) + assert new_model.graph.node[0].op_type == "Conv" + assert new_model.graph.node[1].op_type == scalar_op + assert new_model.graph.node[2].op_type == "Conv" + assert new_model.graph.node[3].op_type == "Conv" + assert new_model.graph.node[4].op_type == scalar_op + assert new_model.graph.node[5].op_type == "Conv" diff --git a/tests/transformation/test_move_scalar_past_matmul.py b/tests/transformation/test_move_scalar_past_matmul.py index 896527e82d8cfa869cb979d1102904c70703a14c..e432dbf4ec1a38551609e5914e2d44968a020908 100644 --- a/tests/transformation/test_move_scalar_past_matmul.py +++ b/tests/transformation/test_move_scalar_past_matmul.py @@ -27,6 +27,7 @@ # OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. import numpy as np +import pytest import onnx.helper as oh from onnx import TensorProto @@ -99,3 +100,56 @@ def test_move_scalar_add_past_matmul(): assert new_model.graph.node[0].op_type == "MatMul" assert new_model.graph.node[1].op_type == "Add" assert new_model.graph.node[0].output[0] == new_model.graph.node[1].input[0] + + +@pytest.mark.parametrize( + "test_args", + [("Add", MoveScalarAddPastMatMul()), ("Mul", MoveScalarMulPastMatMul())], +) +def test_move_scalar_past_matmul_only_if_linear(test_args): + scalar_op = test_args[0] + transf_fxn = test_args[1] + input_shape = [1, 2] + matmul_shape = [2, 2] + top_in = oh.make_tensor_value_info("top_in", TensorProto.FLOAT, input_shape) + top_out = oh.make_tensor_value_info("top_out", TensorProto.FLOAT, input_shape) + + p1 = oh.make_tensor_value_info("p1", TensorProto.FLOAT, [1, 1]) + p2 = oh.make_tensor_value_info("p2", TensorProto.FLOAT, matmul_shape) + p3 = oh.make_tensor_value_info("p3", TensorProto.FLOAT, matmul_shape) + p4 = oh.make_tensor_value_info("p4", TensorProto.FLOAT, matmul_shape) + modelproto = oh.make_model( + oh.make_graph( + name="test", + inputs=[top_in], + outputs=[top_out], + value_info=[p1, p2, p3, p4], + nodes=[ + oh.make_node(scalar_op, ["top_in", "p1"], ["t1"]), + oh.make_node("MatMul", ["t1", "p2"], ["fork"]), + oh.make_node("MatMul", ["fork", "p3"], ["t3"]), + oh.make_node(scalar_op, ["t3", "fork"], ["t4"]), + oh.make_node("MatMul", ["t4", "p4"], ["top_out"]), + ], + ) + ) + model = ModelWrapper(modelproto) + model = model.transform(InferShapes()) + + np.random.seed(0) + model.set_initializer("p1", np.random.rand(1, 1).astype(np.float32)) + model.set_initializer("p2", np.random.rand(*matmul_shape).astype(np.float32)) + model.set_initializer("p3", np.random.rand(*matmul_shape).astype(np.float32)) + model.set_initializer("p4", np.random.rand(*matmul_shape).astype(np.float32)) + + # Transform + new_model = model.transform(transf_fxn) + + # Test + inp_dict = {"top_in": np.random.rand(*input_shape).astype(np.float32)} + assert ox.compare_execution(model, new_model, inp_dict) + assert new_model.graph.node[0].op_type == "MatMul" + assert new_model.graph.node[1].op_type == scalar_op + assert new_model.graph.node[2].op_type == "MatMul" + assert new_model.graph.node[3].op_type == scalar_op + assert new_model.graph.node[4].op_type == "MatMul"