diff --git a/notebooks/basics/1_brevitas_network_import.ipynb b/notebooks/basics/1_brevitas_network_import.ipynb
index ad2b3db8ffcf3ae99e2a3ca13a2c002685e2df92..8ba7d00a171f68577b28c5897f0106ea4207a6ef 100644
--- a/notebooks/basics/1_brevitas_network_import.ipynb
+++ b/notebooks/basics/1_brevitas_network_import.ipynb
@@ -31,7 +31,7 @@
    "source": [
     "## 1. Load up the trained PyTorch model\n",
     "\n",
-    "The FINN Docker image comes with several [example Brevitas networks](https://github.com/Xilinx/brevitas/tree/master/brevitas_examples/bnn_pynq), and we'll use the LFC-w1a1 model as the example network here. This is a binarized fully connected network trained on the MNIST dataset. Let's start by looking at what the PyTorch network definition looks like:"
+    "The FINN Docker image comes with several [example Brevitas networks](https://github.com/Xilinx/brevitas/tree/master/src/brevitas_examples/bnn_pynq), and we'll use the LFC-w1a1 model as the example network here. This is a binarized fully connected network trained on the MNIST dataset. Let's start by looking at what the PyTorch network definition looks like:"
    ]
   },
   {
@@ -65,51 +65,55 @@
       "# OUT OF OR IN CONNECTION WITH THE SOFTWARE OR THE USE OR OTHER DEALINGS IN THE\n",
       "# SOFTWARE.\n",
       "\n",
+      "import ast\n",
       "from functools import reduce\n",
       "from operator import mul\n",
       "\n",
       "from torch.nn import Module, ModuleList, BatchNorm1d, Dropout\n",
       "import torch\n",
       "\n",
-      "from .common import get_quant_linear, get_act_quant, get_quant_type, QuantLinear\n",
+      "from brevitas.nn import QuantIdentity, QuantLinear\n",
+      "from .common import CommonWeightQuant, CommonActQuant\n",
+      "from .tensor_norm import TensorNorm\n",
       "\n",
-      "FC_OUT_FEATURES = [1024, 1024, 1024]\n",
-      "INTERMEDIATE_FC_PER_OUT_CH_SCALING = True\n",
-      "LAST_FC_PER_OUT_CH_SCALING = False\n",
-      "IN_DROPOUT = 0.2\n",
-      "HIDDEN_DROPOUT = 0.2\n",
+      "DROPOUT = 0.2\n",
       "\n",
       "\n",
-      "class LFC(Module):\n",
+      "class FC(Module):\n",
       "\n",
-      "    def __init__(self, num_classes=10, weight_bit_width=None, act_bit_width=None,\n",
-      "                 in_bit_width=None, in_ch=1, in_features=(28, 28)):\n",
-      "        super(LFC, self).__init__()\n",
-      "\n",
-      "        weight_quant_type = get_quant_type(weight_bit_width)\n",
-      "        act_quant_type = get_quant_type(act_bit_width)\n",
-      "        in_quant_type = get_quant_type(in_bit_width)\n",
+      "    def __init__(\n",
+      "            self,\n",
+      "            num_classes,\n",
+      "            weight_bit_width,\n",
+      "            act_bit_width,\n",
+      "            in_bit_width,\n",
+      "            in_channels,\n",
+      "            out_features,\n",
+      "            in_features=(28, 28)):\n",
+      "        super(FC, self).__init__()\n",
       "\n",
       "        self.features = ModuleList()\n",
-      "        self.features.append(get_act_quant(in_bit_width, in_quant_type))\n",
-      "        self.features.append(Dropout(p=IN_DROPOUT))\n",
+      "        self.features.append(QuantIdentity(act_quant=CommonActQuant, bit_width=in_bit_width))\n",
+      "        self.features.append(Dropout(p=DROPOUT))\n",
       "        in_features = reduce(mul, in_features)\n",
-      "        for out_features in FC_OUT_FEATURES:\n",
-      "            self.features.append(get_quant_linear(in_features=in_features,\n",
-      "                                                  out_features=out_features,\n",
-      "                                                  per_out_ch_scaling=INTERMEDIATE_FC_PER_OUT_CH_SCALING,\n",
-      "                                                  bit_width=weight_bit_width,\n",
-      "                                                  quant_type=weight_quant_type))\n",
+      "        for out_features in out_features:\n",
+      "            self.features.append(QuantLinear(\n",
+      "                in_features=in_features,\n",
+      "                out_features=out_features,\n",
+      "                bias=False,\n",
+      "                weight_bit_width=weight_bit_width,\n",
+      "                weight_quant=CommonWeightQuant))\n",
       "            in_features = out_features\n",
       "            self.features.append(BatchNorm1d(num_features=in_features))\n",
-      "            self.features.append(get_act_quant(act_bit_width, act_quant_type))\n",
-      "            self.features.append(Dropout(p=HIDDEN_DROPOUT))\n",
-      "        self.features.append(get_quant_linear(in_features=in_features,\n",
-      "                                   out_features=num_classes,\n",
-      "                                   per_out_ch_scaling=LAST_FC_PER_OUT_CH_SCALING,\n",
-      "                                   bit_width=weight_bit_width,\n",
-      "                                   quant_type=weight_quant_type))\n",
-      "        self.features.append(BatchNorm1d(num_features=num_classes))\n",
+      "            self.features.append(QuantIdentity(act_quant=CommonActQuant, bit_width=act_bit_width))\n",
+      "            self.features.append(Dropout(p=DROPOUT))\n",
+      "        self.features.append(QuantLinear(\n",
+      "                in_features=in_features,\n",
+      "                out_features=num_classes,\n",
+      "                bias=False,\n",
+      "                weight_bit_width=weight_bit_width,\n",
+      "                weight_quant=CommonWeightQuant))\n",
+      "        self.features.append(TensorNorm())\n",
       "\n",
       "        for m in self.modules():\n",
       "          if isinstance(m, QuantLinear):\n",
@@ -128,17 +132,20 @@
       "        return x\n",
       "\n",
       "\n",
-      "def lfc(cfg):\n",
+      "def fc(cfg):\n",
       "    weight_bit_width = cfg.getint('QUANT', 'WEIGHT_BIT_WIDTH')\n",
       "    act_bit_width = cfg.getint('QUANT', 'ACT_BIT_WIDTH')\n",
       "    in_bit_width = cfg.getint('QUANT', 'IN_BIT_WIDTH')\n",
       "    num_classes = cfg.getint('MODEL', 'NUM_CLASSES')\n",
       "    in_channels = cfg.getint('MODEL', 'IN_CHANNELS')\n",
-      "    net = LFC(weight_bit_width=weight_bit_width,\n",
-      "              act_bit_width=act_bit_width,\n",
-      "              in_bit_width=in_bit_width,\n",
-      "              num_classes=num_classes,\n",
-      "              in_ch=in_channels)\n",
+      "    out_features = ast.literal_eval(cfg.get('MODEL', 'OUT_FEATURES'))\n",
+      "    net = FC(\n",
+      "        weight_bit_width=weight_bit_width,\n",
+      "        act_bit_width=act_bit_width,\n",
+      "        in_bit_width=in_bit_width,\n",
+      "        in_channels=in_channels,\n",
+      "        out_features=out_features,\n",
+      "        num_classes=num_classes)\n",
       "    return net\n",
       "\n"
      ]
@@ -146,7 +153,7 @@
    ],
    "source": [
     "from brevitas_examples import bnn_pynq\n",
-    "showSrc(bnn_pynq.models.LFC)"
+    "showSrc(bnn_pynq.models.FC)"
    ]
   },
   {
@@ -164,20 +171,29 @@
     {
      "data": {
       "text/plain": [
-       "LFC(\n",
+       "FC(\n",
        "  (features): ModuleList(\n",
-       "    (0): QuantHardTanh(\n",
-       "      (act_quant_proxy): ActivationQuantProxy(\n",
+       "    (0): QuantIdentity(\n",
+       "      (input_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (act_quant): ActQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
        "        (fused_activation_quant_proxy): FusedActivationQuantProxy(\n",
        "          (activation_impl): Identity()\n",
        "          (tensor_quant): ClampedBinaryQuant(\n",
-       "            (scaling_impl): StandaloneScaling(\n",
-       "              (restrict_value): RestrictValue(\n",
-       "                (forward_impl): Sequential(\n",
-       "                  (0): PowerOfTwo()\n",
-       "                  (1): ClampMin()\n",
-       "                )\n",
+       "            (scaling_impl): ConstScaling(\n",
+       "              (restrict_clamp_scaling): _RestrictClampValue(\n",
+       "                (restrict_value_impl): FloatRestrictValue()\n",
+       "                (clamp_min_ste): Identity()\n",
        "              )\n",
+       "              (value): StatelessBuffer()\n",
+       "            )\n",
+       "            (bit_width): BitWidthConst(\n",
+       "              (bit_width): StatelessBuffer()\n",
+       "            )\n",
+       "            (delay_wrapper): DelayWrapper(\n",
+       "              (delay_impl): _NoDelay()\n",
        "            )\n",
        "          )\n",
        "        )\n",
@@ -186,34 +202,56 @@
        "    (1): Dropout(p=0.2)\n",
        "    (2): QuantLinear(\n",
        "      in_features=784, out_features=1024, bias=False\n",
-       "      (weight_reg): WeightReg()\n",
-       "      (weight_quant): WeightQuantProxy(\n",
+       "      (input_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (output_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (weight_quant): WeightQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
        "        (tensor_quant): BinaryQuant(\n",
-       "          (scaling_impl): StandaloneScaling(\n",
-       "            (restrict_value): RestrictValue(\n",
-       "              (forward_impl): Sequential(\n",
-       "                (0): PowerOfTwo()\n",
-       "                (1): Identity()\n",
-       "              )\n",
+       "          (scaling_impl): ConstScaling(\n",
+       "            (restrict_clamp_scaling): _RestrictClampValue(\n",
+       "              (restrict_value_impl): FloatRestrictValue()\n",
+       "              (clamp_min_ste): Identity()\n",
        "            )\n",
+       "            (value): StatelessBuffer()\n",
+       "          )\n",
+       "          (bit_width): BitWidthConst(\n",
+       "            (bit_width): StatelessBuffer()\n",
+       "          )\n",
+       "          (delay_wrapper): DelayWrapper(\n",
+       "            (delay_impl): _NoDelay()\n",
        "          )\n",
        "        )\n",
        "      )\n",
-       "      (bias_quant): BiasQuantProxy()\n",
+       "      (bias_quant): BiasQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
        "    )\n",
        "    (3): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
-       "    (4): QuantHardTanh(\n",
-       "      (act_quant_proxy): ActivationQuantProxy(\n",
+       "    (4): QuantIdentity(\n",
+       "      (input_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (act_quant): ActQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
        "        (fused_activation_quant_proxy): FusedActivationQuantProxy(\n",
        "          (activation_impl): Identity()\n",
        "          (tensor_quant): ClampedBinaryQuant(\n",
-       "            (scaling_impl): StandaloneScaling(\n",
-       "              (restrict_value): RestrictValue(\n",
-       "                (forward_impl): Sequential(\n",
-       "                  (0): PowerOfTwo()\n",
-       "                  (1): ClampMin()\n",
-       "                )\n",
+       "            (scaling_impl): ConstScaling(\n",
+       "              (restrict_clamp_scaling): _RestrictClampValue(\n",
+       "                (restrict_value_impl): FloatRestrictValue()\n",
+       "                (clamp_min_ste): Identity()\n",
        "              )\n",
+       "              (value): StatelessBuffer()\n",
+       "            )\n",
+       "            (bit_width): BitWidthConst(\n",
+       "              (bit_width): StatelessBuffer()\n",
+       "            )\n",
+       "            (delay_wrapper): DelayWrapper(\n",
+       "              (delay_impl): _NoDelay()\n",
        "            )\n",
        "          )\n",
        "        )\n",
@@ -222,34 +260,56 @@
        "    (5): Dropout(p=0.2)\n",
        "    (6): QuantLinear(\n",
        "      in_features=1024, out_features=1024, bias=False\n",
-       "      (weight_reg): WeightReg()\n",
-       "      (weight_quant): WeightQuantProxy(\n",
+       "      (input_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (output_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (weight_quant): WeightQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
        "        (tensor_quant): BinaryQuant(\n",
-       "          (scaling_impl): StandaloneScaling(\n",
-       "            (restrict_value): RestrictValue(\n",
-       "              (forward_impl): Sequential(\n",
-       "                (0): PowerOfTwo()\n",
-       "                (1): Identity()\n",
-       "              )\n",
+       "          (scaling_impl): ConstScaling(\n",
+       "            (restrict_clamp_scaling): _RestrictClampValue(\n",
+       "              (restrict_value_impl): FloatRestrictValue()\n",
+       "              (clamp_min_ste): Identity()\n",
        "            )\n",
+       "            (value): StatelessBuffer()\n",
+       "          )\n",
+       "          (bit_width): BitWidthConst(\n",
+       "            (bit_width): StatelessBuffer()\n",
+       "          )\n",
+       "          (delay_wrapper): DelayWrapper(\n",
+       "            (delay_impl): _NoDelay()\n",
        "          )\n",
        "        )\n",
        "      )\n",
-       "      (bias_quant): BiasQuantProxy()\n",
+       "      (bias_quant): BiasQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
        "    )\n",
        "    (7): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
-       "    (8): QuantHardTanh(\n",
-       "      (act_quant_proxy): ActivationQuantProxy(\n",
+       "    (8): QuantIdentity(\n",
+       "      (input_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (act_quant): ActQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
        "        (fused_activation_quant_proxy): FusedActivationQuantProxy(\n",
        "          (activation_impl): Identity()\n",
        "          (tensor_quant): ClampedBinaryQuant(\n",
-       "            (scaling_impl): StandaloneScaling(\n",
-       "              (restrict_value): RestrictValue(\n",
-       "                (forward_impl): Sequential(\n",
-       "                  (0): PowerOfTwo()\n",
-       "                  (1): ClampMin()\n",
-       "                )\n",
+       "            (scaling_impl): ConstScaling(\n",
+       "              (restrict_clamp_scaling): _RestrictClampValue(\n",
+       "                (restrict_value_impl): FloatRestrictValue()\n",
+       "                (clamp_min_ste): Identity()\n",
        "              )\n",
+       "              (value): StatelessBuffer()\n",
+       "            )\n",
+       "            (bit_width): BitWidthConst(\n",
+       "              (bit_width): StatelessBuffer()\n",
+       "            )\n",
+       "            (delay_wrapper): DelayWrapper(\n",
+       "              (delay_impl): _NoDelay()\n",
        "            )\n",
        "          )\n",
        "        )\n",
@@ -258,34 +318,56 @@
        "    (9): Dropout(p=0.2)\n",
        "    (10): QuantLinear(\n",
        "      in_features=1024, out_features=1024, bias=False\n",
-       "      (weight_reg): WeightReg()\n",
-       "      (weight_quant): WeightQuantProxy(\n",
+       "      (input_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (output_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (weight_quant): WeightQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
        "        (tensor_quant): BinaryQuant(\n",
-       "          (scaling_impl): StandaloneScaling(\n",
-       "            (restrict_value): RestrictValue(\n",
-       "              (forward_impl): Sequential(\n",
-       "                (0): PowerOfTwo()\n",
-       "                (1): Identity()\n",
-       "              )\n",
+       "          (scaling_impl): ConstScaling(\n",
+       "            (restrict_clamp_scaling): _RestrictClampValue(\n",
+       "              (restrict_value_impl): FloatRestrictValue()\n",
+       "              (clamp_min_ste): Identity()\n",
        "            )\n",
+       "            (value): StatelessBuffer()\n",
+       "          )\n",
+       "          (bit_width): BitWidthConst(\n",
+       "            (bit_width): StatelessBuffer()\n",
+       "          )\n",
+       "          (delay_wrapper): DelayWrapper(\n",
+       "            (delay_impl): _NoDelay()\n",
        "          )\n",
        "        )\n",
        "      )\n",
-       "      (bias_quant): BiasQuantProxy()\n",
+       "      (bias_quant): BiasQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
        "    )\n",
        "    (11): BatchNorm1d(1024, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
-       "    (12): QuantHardTanh(\n",
-       "      (act_quant_proxy): ActivationQuantProxy(\n",
+       "    (12): QuantIdentity(\n",
+       "      (input_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (act_quant): ActQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
        "        (fused_activation_quant_proxy): FusedActivationQuantProxy(\n",
        "          (activation_impl): Identity()\n",
        "          (tensor_quant): ClampedBinaryQuant(\n",
-       "            (scaling_impl): StandaloneScaling(\n",
-       "              (restrict_value): RestrictValue(\n",
-       "                (forward_impl): Sequential(\n",
-       "                  (0): PowerOfTwo()\n",
-       "                  (1): ClampMin()\n",
-       "                )\n",
+       "            (scaling_impl): ConstScaling(\n",
+       "              (restrict_clamp_scaling): _RestrictClampValue(\n",
+       "                (restrict_value_impl): FloatRestrictValue()\n",
+       "                (clamp_min_ste): Identity()\n",
        "              )\n",
+       "              (value): StatelessBuffer()\n",
+       "            )\n",
+       "            (bit_width): BitWidthConst(\n",
+       "              (bit_width): StatelessBuffer()\n",
+       "            )\n",
+       "            (delay_wrapper): DelayWrapper(\n",
+       "              (delay_impl): _NoDelay()\n",
        "            )\n",
        "          )\n",
        "        )\n",
@@ -294,22 +376,35 @@
        "    (13): Dropout(p=0.2)\n",
        "    (14): QuantLinear(\n",
        "      in_features=1024, out_features=10, bias=False\n",
-       "      (weight_reg): WeightReg()\n",
-       "      (weight_quant): WeightQuantProxy(\n",
+       "      (input_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (output_quant): IdentityQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
+       "      (weight_quant): WeightQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
        "        (tensor_quant): BinaryQuant(\n",
-       "          (scaling_impl): StandaloneScaling(\n",
-       "            (restrict_value): RestrictValue(\n",
-       "              (forward_impl): Sequential(\n",
-       "                (0): PowerOfTwo()\n",
-       "                (1): Identity()\n",
-       "              )\n",
+       "          (scaling_impl): ConstScaling(\n",
+       "            (restrict_clamp_scaling): _RestrictClampValue(\n",
+       "              (restrict_value_impl): FloatRestrictValue()\n",
+       "              (clamp_min_ste): Identity()\n",
        "            )\n",
+       "            (value): StatelessBuffer()\n",
+       "          )\n",
+       "          (bit_width): BitWidthConst(\n",
+       "            (bit_width): StatelessBuffer()\n",
+       "          )\n",
+       "          (delay_wrapper): DelayWrapper(\n",
+       "            (delay_impl): _NoDelay()\n",
        "          )\n",
        "        )\n",
        "      )\n",
-       "      (bias_quant): BiasQuantProxy()\n",
+       "      (bias_quant): BiasQuantProxyFromInjector(\n",
+       "        (_zero_hw_sentinel): StatelessBuffer()\n",
+       "      )\n",
        "    )\n",
-       "    (15): BatchNorm1d(10, eps=1e-05, momentum=0.1, affine=True, track_running_stats=True)\n",
+       "    (15): TensorNorm()\n",
        "  )\n",
        ")"
       ]
@@ -339,7 +434,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAARX0lEQVR4nO3dfYyVZXrH8d/FoDAw8iYRCaisG/5QqmUbgk1KyOKmxlUMbKJm/aPauAmarMmqTVqz/UOSaqJVa/pH3YStL9CsmiWoq0a7a82mWo1GNFQQW1CULGR4E5H3t+HqH/NgZ3We6549z3nOc9z7+0kmM3Ouec65OTM/zsv13Pdt7i4Af/xGNT0AAJ1B2IFMEHYgE4QdyARhBzIxupM3Zma89Z+ZUaPKH09OnTpV23VXvf6enp6wPjAw0PJ1183dbbjLK4XdzK6U9M+SeiT9q7vfV+X6cmU27O/mS6k/6ip/eKNHx38CqcCk6r29vaW1Q4cOhcem9PX1hfUDBw6U1lIt50mTJoX1zz77LKx3o5afxptZj6R/kfR9SRdLusHMLm7XwAC0V5XX7PMlfeTuW9z9uKSnJS1pz7AAtFuVsM+Q9Lsh328rLvs9ZrbMzNaa2doKtwWgotrfoHP3FZJWSLxBBzSpyiP7dknnDfl+ZnEZgC5UJezvSJptZt8yszMl/VDS8+0ZFoB2a/lpvLufNLPbJP1ag623x9z9g7aNLCPjx48P6wcPHmz5useMGRPWjx07FtZTbcFx48aF9ai9lmoppqSOj9prqT76vn37WhpTN6v0mt3dX5L0UpvGAqBGnC4LZIKwA5kg7EAmCDuQCcIOZIKwA5mwTq4um+vpsqled6qXffTo0bA+duzYlo9Nia676vWfffbZYb3qNNLofp06dWp47O7du8N6amrwyZMnw3qdyuaz88gOZIKwA5kg7EAmCDuQCcIOZIKwA5mg9fYNkGrNVfkd1nnddUtNDa6yem1q6m5qanCTS03TegMyR9iBTBB2IBOEHcgEYQcyQdiBTBB2IBP02TvgrLPOCuvRbqOSNHHixLB+4sSJ0lpqN9LUFNbPP/88rC9YsCCs33rrraW1VC/6jjvuCOtbt24N601OM20SfXYgc4QdyARhBzJB2IFMEHYgE4QdyARhBzJBn/0b4JFHHgnrUS871Wuuuox1b29vWI+ktk2+5JJLwvqmTZvC+vHjx0trZ5xxRnhsdO6ClP53HzlyJKzXqazPXmnLZjP7VNIBSQOSTrr7vCrXB6A+lcJeWOTue9pwPQBqxGt2IBNVw+6SfmNm75rZsuF+wMyWmdlaM1tb8bYAVFD1afwCd99uZudIesXM/sfdXxv6A+6+QtIKiTfogCZVemR39+3F512SnpU0vx2DAtB+LYfdzMab2Vmnv5Z0haQN7RoYgPaq8jR+mqRniz7taElPuvu/t2VUf2RSWzYvWrQorF922WVhPeqVHzx4MDw21W/u6+sL66nzNKI566m11x999NGWr1uS7rzzztLaW2+9FR5b93bSTWg57O6+RdKftnEsAGpE6w3IBGEHMkHYgUwQdiAThB3IBFNcu0Bqqubs2bPD+v79+0trEyZMCI+NpoFK6SmwVbZ8TrX9UlJLcO/du7e0tnTp0vDYdevWhfVUSzLV8qwTS0kDmSPsQCYIO5AJwg5kgrADmSDsQCYIO5CJdiw42TFRT7fOfnBK6thU/ZZbbgnrq1atCuszZ85s+bZTffZ77rknrK9evTqsn3nmmaW1K664Ijz2wQcfDOuprbCj2168eHF47LZt28L6nj3fvDVWeWQHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiATHZ/Pnup3Rzo51naqOvd54cKFYf2iiy4qrY0bNy48dvTo+FSLNWvWhPUtW7aE9SpSyz3PmTMnrKfu90jq75T57AC6FmEHMkHYgUwQdiAThB3IBGEHMkHYgUx0vM8+alT5/y9V54XXqcpc+lOnTlW67eg+S9VPnjwZHjt+/PiwfujQobCe2o46+p2l5tJfffXVYf3pp58O61X67Kk17VP3a5Na7rOb2WNmtsvMNgy5bIqZvWJmm4vPk9s5WADtN5Kn8U9IuvIrl90l6VV3ny3p1eJ7AF0sGXZ3f03SV/fRWSJpZfH1SknxXjoAGtfqGnTT3L2/+HqHpGllP2hmyyQta/F2ALRJ5QUn3d2jDRvdfYWkFRIbOwJNarX1ttPMpktS8XlX+4YEoA6thv15STcVX98k6VftGQ6AuiT77Gb2lKTvSpoqaaekuyU9J+mXks6XtFXS9e5evhn2/19XbU/jq64bX7UeSfVkU3uoR/uvV9Xb2xvWjxw5EtZT5wBUOcfgwgsvDOsff/xxy9edGldqTfqUw4cPVzq+irI+e/I1u7vfUFL6XqURAegoTpcFMkHYgUwQdiAThB3IBGEHMsGWzYVUC3JgYCCsR3p6esJ61WWHozZRqsWUmsKakrr+aNvkqCZJixYtamlMp0W/0xMnToTHpqa4Vvl7aAqP7EAmCDuQCcIOZIKwA5kg7EAmCDuQCcIOZKKr+ux1budcdTnnKuq+7QMHDpTWUv3iVK87dXyqTx8tF51axvq6664L60ePHg3rY8eOLa2l+uyp31mTWzK3ikd2IBOEHcgEYQcyQdiBTBB2IBOEHcgEYQcy0fE+ezS3u5t75dGSyanllFPq3Fb50ksvDY+dM2dOWE8tJf3cc8+F9UjUB5ekhQsXhvUqW3inlqGOzl2Qqi/B3QQe2YFMEHYgE4QdyARhBzJB2IFMEHYgE4QdyETH++zRnPU6++ipufKped1RT3j06PhuXLp0aVhPHb9kyZKwPmbMmNLa3Llzw2MnTZoU1lO97Ndff73l42fPnh0em1qbPdXrXr9+fWnt8ssvD4+N7lOpO/voKclHdjN7zMx2mdmGIZctN7PtZrau+Liq3mECqGokT+OfkHTlMJc/7O5zi4+X2jssAO2WDLu7vyZpbwfGAqBGVd6gu83M3i+e5k8u+yEzW2Zma81sbYXbAlBRq2H/maRvS5orqV/SQ2U/6O4r3H2eu89r8bYAtEFLYXf3ne4+4O6nJP1c0vz2DgtAu7UUdjObPuTbH0jaUPazALqDpfqoZvaUpO9Kmippp6S7i+/nSnJJn0q6xd37kzdmFt5Yqt+cmvcdmTVrVli/5pprwvrixYtLa6l516l526m509H+61K8hnlfX194bErVed3R7/SLL74Ij504cWJYT9m8eXNpbdWqVeGxDz1U+spUUnf32d192JNKkifVuPsNw1z8aOURAegoTpcFMkHYgUwQdiAThB3IBGEHMpFsvbX1xsw8Wna5zimud999d1hfvnx5WN+zZ09pberUqa0M6UuprYf37o2nJkT1Cy64IDw21RZMbdmccuzYsdJaahpp6u8h1YqNpi2ntlx++eWXw/rNN98c1pvc0rms9cYjO5AJwg5kgrADmSDsQCYIO5AJwg5kgrADmeh4nz2qV9maODXVMtX3rLLt8q5du8L61q1bw/oDDzwQ1levXh3W580rXwTo4YcfDo9Nbdk8eXLpimOSpG3btoX16Hf6xBNPhMd+8sknYf3aa68N69HU46rTa1988cWwnpoyXSf67EDmCDuQCcIOZIKwA5kg7EAmCDuQCcIOZKKjffZRo0Z5ND/6+PHj4fHnnHNOaW337t3hsak+e2rudNQvTm0HvWnTprA+ZcqUsJ5atjha7vn8888Pj03NZ08t771v376wfuONN5bWXnjhhfDYlNQ6AtFy0YsWLQqPTa0xkLpfUst/14k+O5A5wg5kgrADmSDsQCYIO5AJwg5kgrADmeiq+exVpPqeK1euDOvXX399y9d/+PDh8Nhx48aF9dS2yKl5/gMDA6W11Lrvb775Zlh/8sknw/q6devC+htvvFFaS51fkOrhp37n0Xkb8+fPD499++23w/rjjz8e1lPrytep5T67mZ1nZr81s41m9oGZ/aS4fIqZvWJmm4vP8SoHABo1kqfxJyX9jbtfLOnPJf3YzC6WdJekV919tqRXi+8BdKlk2N29393fK74+IOlDSTMkLZF0+rnxSklL6xokgOriFz1fYWazJH1H0tuSprl7f1HaIWlayTHLJC1rfYgA2mHE78abWZ+kNZJud/f9Q2s++C7fsG++ufsKd5/n7uWrIgKo3YjCbmZnaDDov3D3Z4qLd5rZ9KI+XVK8xCqARiVbbzY4f3OlpL3ufvuQyx+Q9Jm732dmd0ma4u5/m7iu8MbOPffccCw7duwI65Fo+15JmjlzZli/9957S2szZswIj01tuZzaujjaLlqS7r///tLaxo0bw2NTU1xT2yKnpKYtR1JtwxMnToT1aOpx6u9+woQJYb3qlOk6lbXeRvKa/S8k/ZWk9WZ2uqn6U0n3Sfqlmf1I0lZJcaMaQKOSYXf3/5JU9l/k99o7HAB14XRZIBOEHcgEYQcyQdiBTBB2IBMdneLa09PjUV83NVU06n3u37+/tCZJfX19YT3VN416vlX6vVK655s6RyDqZad6+MeOHQvrVUW/79Ryzampwam/lyq/s5SqY6sTS0kDmSPsQCYIO5AJwg5kgrADmSDsQCYIO5CJrlpKOjWHOOqlp5YVrjove/r06aW1/v7+0tpI9Pb2hvXUls11XndqGetDhw6F9SpzylNGjYofq6rMKW/6/IQq6LMDmSPsQCYIO5AJwg5kgrADmSDsQCYIO5CJruqzA6iOPjuQOcIOZIKwA5kg7EAmCDuQCcIOZIKwA5lIht3MzjOz35rZRjP7wMx+Uly+3My2m9m64uOq+ocLoFXJk2rMbLqk6e7+npmdJeldSUs1uB/7QXd/cMQ3xkk1QO3KTqoZyf7s/ZL6i68PmNmHkma0d3gA6vYHvWY3s1mSviPp7eKi28zsfTN7zMwmlxyzzMzWmtnaSiMFUMmIz403sz5J/ynpXnd/xsymSdojySX9gwaf6t+cuA6exgM1K3saP6Kwm9kZkl6U9Gt3/6dh6rMkvejuf5K4HsIO1KzliTA2uDzoo5I+HBr04o27034gaUPVQQKoz0jejV8g6XVJ6yWdXpv3p5JukDRXg0/jP5V0S/FmXnRdPLIDNav0NL5dCDtQP+azA5kj7EAmCDuQCcIOZIKwA5kg7EAmCDuQCcIOZIKwA5kg7EAmCDuQCcIOZIKwA5kg7EAmkgtOttkeSVuHfD+1uKwbdevYunVcEmNrVTvHdkFZoaPz2b9242Zr3X1eYwMIdOvYunVcEmNrVafGxtN4IBOEHchE02Ff0fDtR7p1bN06LomxtaojY2v0NTuAzmn6kR1AhxB2IBONhN3MrjSz/zWzj8zsribGUMbMPjWz9cU21I3uT1fsobfLzDYMuWyKmb1iZpuLz8PusdfQ2LpiG+9gm/FG77umtz/v+Gt2M+uRtEnSX0raJukdSTe4+8aODqSEmX0qaZ67N34ChpktlHRQ0qrTW2uZ2T9K2uvu9xX/UU5297/rkrEt1x+4jXdNYyvbZvyv1eB9187tz1vRxCP7fEkfufsWdz8u6WlJSxoYR9dz99ck7f3KxUskrSy+XqnBP5aOKxlbV3D3fnd/r/j6gKTT24w3et8F4+qIJsI+Q9Lvhny/Td2137tL+o2ZvWtmy5oezDCmDdlma4ekaU0OZhjJbbw76SvbjHfNfdfK9udV8Qbd1y1w9z+T9H1JPy6ernYlH3wN1k29059J+rYG9wDsl/RQk4MpthlfI+l2d98/tNbkfTfMuDpyvzUR9u2Szhvy/czisq7g7tuLz7skPavBlx3dZOfpHXSLz7saHs+X3H2nuw+4+ylJP1eD912xzfgaSb9w92eKixu/74YbV6futybC/o6k2Wb2LTM7U9IPJT3fwDi+xszGF2+cyMzGS7pC3bcV9fOSbiq+vknSrxocy+/plm28y7YZV8P3XePbn7t7xz8kXaXBd+Q/lvT3TYyhZFwXSvrv4uODpscm6SkNPq07ocH3Nn4k6WxJr0raLOk/JE3porH9mwa39n5fg8Ga3tDYFmjwKfr7ktYVH1c1fd8F4+rI/cbpskAmeIMOyARhBzJB2IFMEHYgE4QdyARhBzJB2IFM/B+tIjCppYWKvAAAAABJRU5ErkJggg==\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAPsAAAD4CAYAAAAq5pAIAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAARYElEQVR4nO3dfYyVZXrH8d/FoDAw8iYRCaisG/5QqmUbgk1KyOKmxlUMbKJm/aPauAmarMmqTVqz/UOSaqJVa/pH3YStL9CsmiWoq0a7a82mWo1GNFQQW1CULGR4E5H3t+HqH/NgZ3We6549z3nOc9z7+0kmM3Ouec65OTM/zsv13Pdt7i4Af/xGNT0AAJ1B2IFMEHYgE4QdyARhBzIxupM3Zma89Z+ZUaPKH09OnTpV23VXvf6enp6wPjAw0PJ1183dbbjLK4XdzK6U9M+SeiT9q7vfV+X6cmU27O/mS6k/6ip/eKNHx38CqcCk6r29vaW1Q4cOhcem9PX1hfUDBw6U1lIt50mTJoX1zz77LKx3o5afxptZj6R/kfR9SRdLusHMLm7XwAC0V5XX7PMlfeTuW9z9uKSnJS1pz7AAtFuVsM+Q9Lsh328rLvs9ZrbMzNaa2doKtwWgotrfoHP3FZJWSLxBBzSpyiP7dknnDfl+ZnEZgC5UJezvSJptZt8yszMl/VDS8+0ZFoB2a/lpvLufNLPbJP1ag623x9z9g7aNLCPjx48P6wcPHmz5useMGRPWjx07FtZTbcFx48aF9ai9lmoppqSOj9prqT76vn37WhlSV6v0mt3dX5L0UpvGAqBGnC4LZIKwA5kg7EAmCDuQCcIOZIKwA5mwTq4um+vpsqled6qXffTo0bA+duzYlo9Nia676vWfffbZYb3qNNLofp06dWp47O7du8N6amrwyZMnw3qdyuaz88gOZIKwA5kg7EAmCDuQCcIOZIKwA5mg9fYNkGrNVfkd1nnddUtNDa6yem1q6m5qanCTS03TegMyR9iBTBB2IBOEHcgEYQcyQdiBTBB2IBP02TvgrLPOCuvRbqOSNHHixLB+4sSJ0lpqN9LUFNbPP/88rC9YsCCs33rrraW1VC/6jjvuCOtbt24N601OM20SfXYgc4QdyARhBzJB2IFMEHYgE4QdyARhBzJBn/0b4JFHHgnrUS871Wuuuox1b29vWI+ktk2+5JJLwvqmTZvC+vHjx0trZ5xxRnhsdO6ClP53HzlyJKzXqazPXmnLZjP7VNIBSQOSTrr7vCrXB6A+lcJeWOTue9pwPQBqxGt2IBNVw+6SfmNm75rZsuF+wMyWmdlaM1tb8bYAVFD1afwCd99uZudIesXM/sfdXxv6A+6+QtIKiTfogCZVemR39+3F512SnpU0vx2DAtB+LYfdzMab2Vmnv5Z0haQN7RoYgPaq8jR+mqRniz7taElPuvu/t2VUf2RSWzYvWrQorF922WVhPeqVHzx4MDw21W/u6+sL66nzNKI566m11x999NGWr1uS7rzzztLaW2+9FR5b93bSTWg57O6+RdKftnEsAGpE6w3IBGEHMkHYgUwQdiAThB3IBFNcu0Bqqubs2bPD+v79+0trEyZMCI+NpoFK6SmwVbZ8TrX9UlJLcO/du7e0tnTp0vDYdevWhfVUSzLV8qwTS0kDmSPsQCYIO5AJwg5kgrADmSDsQCYIO5CJdiw42TFRT7fOfnBK6thU/ZZbbgnrq1atCuszZ85s+bZTffZ77rknrK9evTqsn3nmmaW1K664Ijz2wQcfDOuprbCj2168eHF47LZt28L6nj3fvDVWeWQHMkHYgUwQdiAThB3IBGEHMkHYgUwQdiATHZ/Pnup3Rzo51naqOvd54cKFYf2iiy4qrY0bNy48dvTo+FSLNWvWhPUtW7aE9SpSyz3PmTMnrKfu90jq75T57AC6FmEHMkHYgUwQdiAThB3IBGEHMkHYgUx0vM8+alT5/y9V54XXqcpc+lOnTlW67eg+S9VPnjwZHjt+/PiwfujQobCe2o46+p2l5tJfffXVYf3pp58O61X67Kk17VP3a5Na7rOb2WNmtsvMNgy5bIqZvWJmm4vPk9s5WADtN5Kn8U9IuvIrl90l6VV3ny3p1eJ7AF0sGXZ3f03SV/fRWSJpZfH1SklL2zssAO3W6hp009y9v/h6h6RpZT9oZsskLWvxdgC0SeUFJ93dow0b3X2FpBUSGzsCTWq19bbTzKZLUvF5V/uGBKAOrYb9eUk3FV/fJOlX7RkOgLok++xm9pSk70qaKmmnpLslPSfpl5LOl7RV0vXuXr4Z9v9fV21P46uuG1+1Hkn1ZFN7qEf7r1fV29sb1o8cORLWU+cAVDnH4MILLwzrH3/8ccvXnRpXak36lMOHD1c6voqyPnvyNbu731BS+l6lEQHoKE6XBTJB2IFMEHYgE4QdyARhBzLBls2FVAtyYGAgrEd6enrCetVlh6M2UarFlJrCmpK6/mjb5KgmSYsWLWppTKdFv9MTJ06Ex6amuFb5e2gKj+xAJgg7kAnCDmSCsAOZIOxAJgg7kAnCDmSiq/rsdW7nXHU55yrqvu0DBw6U1lL94lSvO3V8qk8fLRedWsb6uuuuC+tHjx4N62PHji2tpfrsqd9Zk1syt4pHdiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMtHxPns0t7ube+XRksmp5ZRT6txW+dJLLw2PnTNnTlhPLSX93HPPhfVI1AeXpIULF4b1Klt4p5ahjs5dkKovwd0EHtmBTBB2IBOEHcgEYQcyQdiBTBB2IBOEHchEx/vs0Zz1OvvoqbnyqXndUU949Oj4bly6dGlYTx2/ZMmSsD5mzJjS2ty5c8NjJ02aFNZTvezXX3+95eNnz54dHptamz3V616/fn1p7fLLLw+Pje5TqTv76CnJR3Yze8zMdpnZhiGXLTez7Wa2rvi4qt5hAqhqJE/jn5B05TCXP+zuc4uPl9o7LADtlgy7u78maW8HxgKgRlXeoLvNzN4vnuZPLvshM1tmZmvNbG2F2wJQUath/5mkb0uaK6lf0kNlP+juK9x9nrvPa/G2ALRBS2F3953uPuDupyT9XNL89g4LQLu1FHYzmz7k2x9I2lD2swC6g6X6qGb2lKTvSpoqaaeku4vv50pySZ9KusXd+5M3ZhbeWKrfnJr3HZk1a1ZYv+aaa8L64sWLS2upedepedupudPR/utSvIZ5X19feGxK1Xnd0e/0iy++CI+dOHFiWE/ZvHlzaW3VqlXhsQ89VPrKVFJ399ndfdiTSpIn1bj7DcNc/GjlEQHoKE6XBTJB2IFMEHYgE4QdyARhBzKRbL219cbMPFp2uc4prnfffXdYX758eVjfs2dPaW3q1KmtDOlLqa2H9+6NpyZE9QsuuCA8NtUWTG3ZnHLs2LHSWmoaaervIdWKjaYtp7Zcfvnll8P6zTffHNab3NK5rPXGIzuQCcIOZIKwA5kg7EAmCDuQCcIOZIKwA5noeJ89qlfZmjg11TLV96yy7fKuXbvC+tatW8P6Aw88ENZXr14d1ufNK18E6OGHHw6PTW3ZPHly6YpjkqRt27aF9eh3+sQTT4THfvLJJ2H92muvDevR1OOq02tffPHFsJ6aMl0n+uxA5gg7kAnCDmSCsAOZIOxAJgg7kAnCDmSio332UaNGeTQ/+vjx4+Hx55xzTmlt9+7d4bGpPntq7nTUL05tB71p06awPmXKlLCeWrY4Wu75/PPPD49NzWdPLe+9b9++sH7jjTeW1l544YXw2JTUOgLRctGLFi0Kj02tMZC6X1LLf9eJPjuQOcIOZIKwA5kg7EAmCDuQCcIOZIKwA5noqvnsVaT6nitXrgzr119/fcvXf/jw4fDYcePGhfXUtsipef4DAwOltdS672+++WZYf/LJJ8P6unXrwvobb7xRWkudX5Dq4ad+59F5G/Pnzw+Pffvtt8P6448/HtZT68rXqeU+u5mdZ2a/NbONZvaBmf2kuHyKmb1iZpuLz/EqBwAaNZKn8Scl/Y27XyzpzyX92MwulnSXpFfdfbakV4vvAXSpZNjdvd/d3yu+PiDpQ0kzJC2RdPq58UpJS2saI4A2iF/0fIWZzZL0HUlvS5rm7v1FaYekaSXHLJO0rMIYAbTBiN+NN7M+SWsk3e7u+4fWfPBdvmHffHP3Fe4+z93LV0UEULsRhd3MztBg0H/h7s8UF+80s+lFfbqkeIlVAI1Ktt5scP7mSkl73f32IZc/IOkzd7/PzO6SNMXd/zZxXeGNnXvuueFYduzYEdYj0fa9kjRz5sywfu+995bWZsyYER6b2nI5tXVxtF20JN1///2ltY0bN4bHpqa4prZFTklNW46k2oYnTpwI69HU49Tf/YQJE8J61SnTdSprvY3kNftfSPorSevNbF1x2U8l3Sfpl2b2I0lbJcWNagCNSobd3f9LUtl/kd9r73AA1IXTZYFMEHYgE4QdyARhBzJB2IFMdHSKa09Pj0d93dRU0aj3uX///tKaJPX19YX1VN806vlW6fdK6Z5v6hyBqJed6uEfO3YsrFcV/b5TyzWnpgan/l6q/M5Sqo6tTiwlDWSOsAOZIOxAJgg7kAnCDmSCsAOZIOxAJrpqKenUHOKol55aVrjqvOzp06eX1vr7+0trI9Hb2xvWU1s213ndqWWsDx06FNarzClPGTUqfqyqMqe86fMTqqDPDmSOsAOZIOxAJgg7kAnCDmSCsAOZIOxAJrqqzw6gOvrsQOYIO5AJwg5kgrADmSDsQCYIO5AJwg5kIhl2MzvPzH5rZhvN7AMz+0lx+XIz225m64qPq+ofLoBWJU+qMbPpkqa7+3tmdpakdyUt1eB+7Afd/cER3xgn1QC1KzupZiT7s/dL6i++PmBmH0qa0d7hAajbH/Sa3cxmSfqOpLeLi24zs/fN7DEzm1xyzDIzW2tma6sNFUAVIz433sz6JP2npHvd/RkzmyZpjySX9A8afKp/c+I6eBoP1KzsafyIwm5mZ0h6UdKv3f2fhqnPkvSiu/9J4noIO1CzlifC2ODyoI9K+nBo0Is37k77gaQNVQcJoD4jeTd+gaTXJa2XdHpt3p9KukHSXA0+jf9U0i3Fm3nRdfHIDtSs0tP4diHsQP2Yzw5kjrADmSDsQCYIO5AJwg5kgrADmSDsQCYIO5AJwg5kgrADmSDsQCYIO5AJwg5kgrADmUguONlmeyRtHfL91OKybtStY+vWcUmMrVXtHNsFZYWOzmf/2o2brXX3eY0NINCtY+vWcUmMrVWdGhtP44FMEHYgE02HfUXDtx/p1rF167gkxtaqjoyt0dfsADqn6Ud2AB1C2IFMNBJ2M7vSzP7XzD4ys7uaGEMZM/vUzNYX21A3uj9dsYfeLjPbMOSyKWb2ipltLj4Pu8deQ2Prim28g23GG73vmt7+vOOv2c2sR9ImSX8paZukdyTd4O4bOzqQEmb2qaR57t74CRhmtlDSQUmrTm+tZWb/KGmvu99X/Ec52d3/rkvGtlx/4DbeNY2tbJvxv1aD9107tz9vRROP7PMlfeTuW9z9uKSnJS1pYBxdz91fk7T3KxcvkbSy+HqlBv9YOq5kbF3B3fvd/b3i6wOSTm8z3uh9F4yrI5oI+wxJvxvy/TZ1137vLuk3ZvaumS1rejDDmDZkm60dkqY1OZhhJLfx7qSvbDPeNfddK9ufV8UbdF+3wN3/TNL3Jf24eLralXzwNVg39U5/JunbGtwDsF/SQ00OpthmfI2k2919/9Bak/fdMOPqyP3WRNi3SzpvyPczi8u6grtvLz7vkvSsBl92dJOdp3fQLT7vang8X3L3ne4+4O6nJP1cDd53xTbjayT9wt2fKS5u/L4bblydut+aCPs7kmab2bfM7ExJP5T0fAPj+BozG1+8cSIzGy/pCnXfVtTPS7qp+PomSb9qcCy/p1u28S7bZlwN33eNb3/u7h3/kHSVBt+R/1jS3zcxhpJxXSjpv4uPD5oem6SnNPi07oQG39v4kaSzJb0qabOk/5A0pYvG9m8a3Nr7fQ0Ga3pDY1ugwafo70taV3xc1fR9F4yrI/cbp8sCmeANOiAThB3IBGEHMkHYgUwQdiAThB3IBGEHMvF/rSIwqVQD1iIAAAAASUVORK5CYII=\n",
       "text/plain": [
        "<Figure size 432x288 with 1 Axes>"
       ]
@@ -371,8 +466,8 @@
     {
      "data": {
       "text/plain": [
-       "tensor([0.0602, 0.0147, 0.5844, 0.0445, 0.0270, 0.0185, 0.0595, 0.0082, 0.1689,\n",
-       "        0.0141])"
+       "tensor([0.1020, 0.0113, 0.4806, 0.0571, 0.0482, 0.0079, 0.0450, 0.0076, 0.1851,\n",
+       "        0.0552])"
       ]
      },
      "execution_count": 13,
@@ -395,7 +490,7 @@
    "outputs": [
     {
      "data": {
-      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAABHNCSVQICAgIfAhkiAAAAAlwSFlzAAALEgAACxIB0t1+/AAAADh0RVh0U29mdHdhcmUAbWF0cGxvdGxpYiB2ZXJzaW9uMy4yLjEsIGh0dHA6Ly9tYXRwbG90bGliLm9yZy+j8jraAAAclUlEQVR4nO3debgdVZ3u8e9LIDIFgiQqJEDCaMcJ8RgQFZGhO3QreBERrmjHK9NtwkXx2oIitrRTO+GErUAQlEZuiGhHjQRolBYVSEAEkoCEEEgYD5Mg+gCB9/5RdXBz2GefnaHq5Jx6P8+zn1PDqlq/vXeyf7VWVa2SbSIiornWG+oAIiJiaCURREQ0XBJBRETDJRFERDRcEkFERMMlEURENFwSQUSXJFnSjuX0tyV9YjX38ydJ26/d6DrWJ0nflfSIpGvrqjeGjySCEUjSMkn7tVm+t6Rnyx+ivtdPWtbvLOkiSQ9K+qOkGyWdKGnUGsYzQ9ICSU9KOncVtz1U0m8k/VnSLwcp2/r+Hpd0q6T3r0nsA7F9rO1/HaycpF9KOrLftpvaXlpFXAN4E7A/MNH21DXdmaRJZVJcf81Di3VBEkHz3FP+EPW93g4gaQfgGmA58CrbmwPvAnqAMWtaJ/Bp4JzV2PZh4KvA57uty/amwGbAR4GzJE3pX6hhP2LbActsP7GqGzbsc2qsJILo8yngN7ZPtH0vgO1bbf9P24/2LyzprZJuapm/TNL8lvlfSXpHuZ+Lbf8YeKjNfraQ9FNJvWXXxU8lTexbb/ty27MokknXXPgx8AgwRdJ0Sb+WdLqkh4B/kfQiSV+SdJek+8vuno1aYvuIpHsl3SPpf/WL+1xJn26ZP0jSDZIek3S7pGmSPgO8Gfhm2Ur5Zlm2tYtpc0nfK9//nZJOkbReuW66pKvKGB+RdIekA1rqnC5padn6uUPSe9p8vh8AzgbeUMbwqXL5UZKWSHpY0hxJW7dsY0nHSboNuG2wz7r8LL4l6edlHb+W9DJJXy3jvkXSa1vKn1R+Ro9LWiTpf7SsGyXpy2Wr9I6yNflc66P8vGaW38vdkj69pi3WSCKIv9oPmL0K5a8GdpI0TtIGwKuBrSWNKX9Me4BfdbGf9YDvUhy1bgv8BfjmKkXehqT1yh+YsUBfwtodWAq8FPgMRStjZ2BXYEdgAnBquf004P9SdKnsRPH5DFTXVOB7wEfK+vaiOAL/OMVnMKNsfc1os/k3gM2B7YG3AO8DWruzdgduBcYBXwBmqrAJ8HXgANtjgD2BG/rv3PZM4Fjgt2UMn5S0D/A54FBgK+BO4MJ+m76jrPsFrakBHAqcUsb5JPBb4PpyfjbwlZayt1MkyM0pDkDOl7RVue4o4ACK72S3Mo5W5wIrKb6v1wJ/CxxJrBnbeY2wF7AM2K/N8r2BZ4FHW16HluueBqatYj2/Ag4G9gAuBWYB04C3Aje2Kf9p4NxB9rkr8Eib5UcCvxxk29b39zDFD+Nh5brpwF0tZQU8AezQsuwNwB3l9DnA51vW7QwY2LGcPxf4dDn9HeD0AWL6JXBkv2Wm+CEbBTwFTGlZd0zf+yxjXtKybuNy25cBm5Tv853ARoN8LtOBq1rmZwJfaJnftPz+J7XEt0+H/U0qy6zf8lmc1bL+eGBxy/yrgEc77O8G4KBy+grgmJZ1+/XVRZHAn2x9v8DhwC+G8v/bSHil/6957rE9sc3yhyiODtuS9G3giHL2s7Y/C1xJ8eO7opx+hOKo9slyflCSNgZOp0ggW5SLx0gaZfuZbvbRz0DvD4rzH33GU/ywXifpuXAofpwBtgauayl/Z4c6twHmrnqojAM26LfvOylaJn3u65uw/ecy1k1t3yfp3RStlpmSfg182PYtXdS7NcXRet9+/1R2l02gOIiA539W3bi/ZfovbeY37ZuR9D7gRIqEQrluXEtsrXW3Tm9H8Xnd2/KdrbcasUY/6RqKPpdTHF225eIqmb4TzJ8tF/clgr3K6SspEsFb6DIRAB8GdgF2t71ZuS8ofpTXttahdh+k+IF6he2x5WtzFyeaAe6l+IHvs22H/S4Hduiizv4epDgS365fPXd32OavO7bn2d6fIoHfApzVzXYU51ueq7PsZtqyX72VDEssaTuKOGcAW9oeC9zMX7/ve4HWRN76HSynOMgY1/KdbWb7FVXE2iRJBCPXBpI2bHkN1vr7JLCnpC9KehmApB0lnS9p7ADb/IbiR3wqcK3thRQ/MLsD/91XSNL6kjakONoe1S+eMRQ/yI9KenEZBy3bjiq3XR9Yr9x2g1X4HNqy/SzFD9Lpkl5S1jVB0t+VRWYB0yVNKVstnxxgV1B0tbxf0r7luYkJkl5errufov+/XQzPlPV8pjy3sh3FkfL5g8Uv6aXlCepNKH4c/0TRLdaNH5Tx7irpRcBngWtsL+ty+zWxCUWS6QVQcXnvK1vWzwJOKD/DsRRXfgHg4iKGS4EvS9qs/Kx3kPSWGuIe0ZIIRq65FD+wfa9/6VTY9u0UfeSTgIWS/gj8EFgAPD7ANk9QdDEstP1Uufi3wJ22H2gpekoZw0kU3Ut/KZdBcWnoRhRHx1cDl/Sr5r1l+X+nOMH4F7o/8h3MR4ElwNWSHqNoFe1Svrefl7FdUZa5YqCd2L6W4gTv6cAfKVpDfUfcXwMOKa+e+XqbzY+nOFexFLgKuIDuLrNdjyJp3ENxPuQtwP/uYjtsXw58guL7vZeiNXNYN9uuKduLgC9T/Du5n+L8wa9bipxF8WN/I/A7in/HK4G+bsL3AaOBRRRdkbPp0KUZ3VF5wiUiYp1TXi77bdvbDVo4VltaBBGxzpC0kaS/L7sTJ1B0yf1oqOMa6dIiiIh1Rnk+5krg5RTdgD8DTrD92JAGNsIlEURENFy6hiIiGm7Y3VA2btw4T5o0aajDiIgYVq677roHbY9vt27YJYJJkyaxYMGCoQ4jImJYkTTg3fGVdg2pGIHx1nKUw5MGKHNoOQLhQkkXVBlPRES8UGUtgnJo2DMoRm9cAcyXNKe8oaSvzE7AycAbbT/Sd4dnRETUp8oWwVSKkROXlnedXggc1K/MUcAZth8B6Hc3akRE1KDKRDCB548KuILnj6oIxdC+O5cPsri6HAP+BSQdreJRhwt6e3srCjciopmG+vLR9Ske+rE3xbjiZ7Ub4Mz2mbZ7bPeMH9/2pHdERKymKhPB3Tx/CNmJvHB43RXAHNtP274D+ANFYoiIiJpUmQjmUzzKcLKk0RSjG87pV+bHFK0BJI2j6CpaWmFMERHRT2WJwPZKiodPzAMWA7NsL5R0mqQDy2LzgIckLQJ+AXzE9gsecB4REdUZdmMN9fT0ODeURUSsGknX2e5pt27Y3Vkcq+70y/5QeR0f2n/nyuuIiGoM9VVDERExxJIIIiIaLokgIqLhkggiIhouiSAiouGSCCIiGi6JICKi4ZIIIiIaLokgIqLhkggiIhouiSAiouGSCCIiGi6JICKi4ZIIIiIaLokgIqLhkggiIhouiSAiouGSCCIiGi6JICKi4ZIIIiIaLokgIqLhkggiIhouiSAiouGSCCIiGi6JICKi4SpNBJKmSbpV0hJJJ7VZP11Sr6QbyteRVcYTEREvtH5VO5Y0CjgD2B9YAcyXNMf2on5F/5/tGVXFERERnVXZIpgKLLG91PZTwIXAQRXWFxERq6HKRDABWN4yv6Jc1t87Jd0oabakbSqMJyIi2hjqk8U/ASbZfjVwGXBeu0KSjpa0QNKC3t7eWgOMiBjpqkwEdwOtR/gTy2XPsf2Q7SfL2bOB17Xbke0zbffY7hk/fnwlwUZENFWViWA+sJOkyZJGA4cBc1oLSNqqZfZAYHGF8URERBuVXTVke6WkGcA8YBRwju2Fkk4DFtieA/wfSQcCK4GHgelVxRMREe1VlggAbM8F5vZbdmrL9MnAyVXGEBERnQ31yeKIiBhiSQQREQ2XRBAR0XBJBBERDZdEEBHRcEkEERENl0QQEdFwSQQREQ2XRBAR0XBJBBERDZdEEBHRcEkEERENl0QQEdFwgyYCScdL2qKOYCIion7dtAheCsyXNEvSNEmqOqiIiKjPoInA9inATsBMigfH3Cbps5J2qDi2iIioQVfnCGwbuK98rQS2AGZL+kKFsUVERA0GfUKZpBOA9wEPUjxg/iO2n5a0HnAb8M/VhhgREVXq5lGVLwYOtn1n60Lbz0p6WzVhRUREXbrpGtq+fxKQ9H0A24sriSoiImrTTSJ4ReuMpFHA66oJJyIi6jZgIpB0sqTHgVdLeqx8PQ48APxnbRFGRESlBkwEtj9newzwRdubla8xtre0fXKNMUZERIUGPFks6eW2bwEukrRb//W2r680soiIqEWnq4Y+DBwFfLnNOgP7VBJRRETUasBEYPuo8u9b6wsnIiLq1qlr6OBOG9q+eO2HExERdevUNfT2DusMDJoIJE0DvgaMAs62/fkByr0TmA283vaCwfYbERFrT6euofevyY7L+w3OAPYHVlCMYDrH9qJ+5cYAJwDXrEl9ERGxejp1DR1h+3xJJ7Zbb/srg+x7KrDE9tJyfxcCBwGL+pX7V+DfgI90HXVERKw1ne4s3qT8O2aA12AmAMtb5leUy55TXpa6je2fddqRpKMlLZC0oLe3t4uqIyKiW526hr5T/v1UFRWXo5d+heIZBx3ZPhM4E6Cnp8dVxBMR0VTdPKpye0k/kdQr6QFJ/ylp+y72fTewTcv8xHJZnzHAK4FfSloG7AHMkdTTffgREbGmuhl07gJgFrAVsDVwEfCDLrabD+wkabKk0cBhwJy+lbb/aHuc7Um2JwFXAwfmqqGIiHp1kwg2tv192yvL1/nAhoNtZHslMAOYBywGZtleKOk0SQeuWdgREbG2dLpq6MXl5M8lnQRcSHH/wLuBud3s3Pbc/mVtnzpA2b272WdERKxdnW4ou47ih1/l/DEt6wxkBNKIiBGg01VDk+sMJCIihkY3zyxG0iuBKbScG7D9vaqCioiI+gyaCCR9EtibIhHMBQ4ArgKSCCIiRoBurho6BNgXuK8cf+g1wOaVRhUREbXpJhH8xfazwEpJm1E8s3ibQbaJiIhhoptzBAskjQXOoriS6E/AbyuNKiIiajNoIrD9T+XktyVdAmxm+8Zqw4qIiLp0e9XQwcCbKO4fuApIIoiIGCG6GXTuW8CxwE3AzcAxks6oOrCIiKhHNy2CfYC/sW0ASecBCyuNKiIiatPNVUNLgG1b5rcpl0VExAjQadC5n1CcExgDLJZ0bblqKnDtQNtFRMTw0qlr6Eu1RREREUOm06BzV/ZNS3op8Ppy9lrbD1QdWERE1KObq4YOpegKehdwKHCNpEOqDiwiIurRzVVDHwde39cKkDQeuByYXWVgERFRj26uGlqvX1fQQ11uFxERw0A3LYJLJM3jrw+s7/pRlRERse7rmAgkCfg6xYniN5WLz7T9o6oDi4iIenRMBLYtaa7tVwEX1xRTRETUqJu+/uslvX7wYhERMRx1c45gd+AIScuAJwBRNBZeXWVgERFRj24Swd9VHkVERAyZTmMNvQT4GLAjxRDUn7P9WF2BRUREPTqdI/geRVfQN4BNKa4eioiIEaZTItjK9sdtz7N9PLDK5wQkTZN0q6Qlkk5qs/5YSTdJukHSVZKmrGodERGxZjpeNSRpC0kvlvRiYFS/+Y4kjQLOAA4ApgCHt/mhv8D2q2zvCnwB+MrqvY2IiFhdnU4Wbw5cR3GVUJ/ry78Gth9k31OBJbaXAki6EDgIWNRXoN85h03K/UZERI06DUM9aQ33PQFY3jK/guJS1OeRdBxwIjCa4rGYLyDpaOBogG233bZdkYiIWE1DPnic7TNs7wB8FDhlgDJn2u6x3TN+/Ph6A4yIGOGqTAR3UzzfuM/EctlALgTeUWE8ERHRRpWJYD6wk6TJkkYDhwFzWgtI2qll9h+A2yqMJyIi2uh0Q1nHK4NsPzzI+pWSZgDzgFHAObYXSjoNWGB7DjBD0n7A08AjwD+u6huIiIg10+mqoesoruIRsC3FD7WAscBdwOTBdm57Lv2eXWD71JbpE1Y95IiIWJsG7BqyPdn29hSPpXy77XG2twTeBlxaV4AREVGtbs4R7FEe2QNg++fAntWFFBERdepm9NF7JJ0CnF/Ovwe4p7qQIiKiTt20CA4HxgM/onhK2fhyWUREjACDtgjKq4NOkLSJ7SdqiCkiImo0aItA0p6SFgGLy/nXSPpW5ZFFREQtuukaOp3iKWUPAdj+PbBXlUFFRER9urqz2PbyfoueqSCWiIgYAt1cNbRc0p6AJW0AnEDZTRQREcNfNy2CY4HjKIaVvhvYFfinKoOKiIj6dNMi2MX2e1oXSHoj8OtqQoqIiDp10yL4RpfLIiJiGOo0+ugbKIaSGC/pxJZVm1GMJhoRESNAp66h0cCmZZkxLcsfAw6pMqiIiKhPp2cWXwlcKelc23fWGFNERNSom3MEZ0sa2zcjaQtJ8yqMKSIiatRNIhhn+9G+GduPAC+pLqSIiKhTN4ngWUnb9s1I2o7iyWURETECdHMfwceBqyRdSfGoyjcDR1caVURE1KabYagvkbQbsEe56IO2H6w2rIiIqMuAXUOSXl7+3Y3i4fX3lK9ty2URETECdGoRfBg4Cvhym3UG9qkkooiIqFWn+wiOKv++tb5wIiKibp2GmDi404a2L1774URERN06dQ29vfz7Eooxh64o598K/IbiQfYRETHMdeoaej+ApEuBKbbvLee3As6tJbqIiKhcNzeUbdOXBEr3U1xFFBERI0A3ieC/JM2TNF3SdOBnwOXd7FzSNEm3Sloi6aQ260+UtEjSjZL+q7xrOSIiajRoIrA9A/g28Jrydabt4wfbTtIo4AzgAGAKcLikKf2K/Q7osf1qYDbwhVULPyIi1lQ3Q0wAXA88bvtySRtLGmP78UG2mQossb0UQNKFwEHAor4Ctn/RUv5q4IjuQ4+IiLVh0BaBpKMojta/Uy6aAPy4i31PAJa3zK8olw3kA8DPB4jhaEkLJC3o7e3touqIiOhWN+cIjgPeSPFkMmzfxloehlrSEUAP8MV2622fabvHds/48ePXZtUREY3XTdfQk7afkgSApPXpbhjqu4FtWuYnlsueR9J+FCOcvsX2k13sNyIi1qJuWgRXSvoYsJGk/YGLgJ90sd18YCdJkyWNBg4D5rQWkPRaii6nA20/sGqhR0TE2tBNIvgo0AvcBBwDzAVOGWwj2yuBGcA8YDEwy/ZCSadJOrAs9kVgU+AiSTdImjPA7iIioiIdu4bKS0AX2n45cNaq7tz2XIrE0brs1Jbp/VZ1nxERsXZ1bBHYfga4tfVRlRERMbJ0c7J4C2ChpGuBJ/oW2j5w4E0iImK46CYRfKLyKCIiYsh0eh7BhsCxwI4UJ4pnlieAIyJiBOl0juA8ipu8bqIYL6jdIysjImKY69Q1NMX2qwAkzQSurSekiIjVc/plf6i8jg/tv3PlddStU4vg6b6JdAlFRIxcnVoEr5H0WDktijuLHyunbXuzyqOLiIjKdXpU5ag6A4mIiKHRzRATERExgiURREQ0XBJBRETDJRFERDRcEkFERMMlEURENFwSQUREwyURREQ0XBJBRETDJRFERDRcEkFERMMlEURENFwSQUREwyURREQ0XBJBRETDJRFERDRcEkFERMNVmggkTZN0q6Qlkk5qs34vSddLWinpkCpjiYiI9ipLBJJGAWcABwBTgMMlTelX7C5gOnBBVXFERERnnR5ev6amAktsLwWQdCFwELCor4DtZeW6ZyuMIyIiOqiya2gCsLxlfkW5bJVJOlrSAkkLent710pwERFRGBYni22fabvHds/48eOHOpyIiBGlykRwN7BNy/zEcllERKxDqkwE84GdJE2WNBo4DJhTYX0REbEaKksEtlcCM4B5wGJglu2Fkk6TdCCApNdLWgG8C/iOpIVVxRMREe1VedUQtucCc/stO7Vlej5Fl1FERAyRYXGyOCIiqpNEEBHRcEkEERENl0QQEdFwSQQREQ2XRBAR0XBJBBERDZdEEBHRcJXeULauOf2yP1Rex4f237nyOiIi1qZGJYKIpqj6oCcHPCNLuoYiIhouiSAiouGSCCIiGi6JICKi4XKyOCqVK7Ui1n1pEURENFwSQUREwyURREQ0XBJBRETDJRFERDRcrhqKES1DLUQMLi2CiIiGSyKIiGi4dA1FVCTdUjFcpEUQEdFwaRHUJEMtRIxsw/n/eFoEERENV2mLQNI04GvAKOBs25/vt/5FwPeA1wEPAe+2vazKmCKiWsP5yLipKmsRSBoFnAEcAEwBDpc0pV+xDwCP2N4ROB34t6riiYiI9qrsGpoKLLG91PZTwIXAQf3KHAScV07PBvaVpApjioiIfmS7mh1LhwDTbB9Zzr8X2N32jJYyN5dlVpTzt5dlHuy3r6OBo8vZXYBbKwm6vXHAg4OWSt2pO3Wn7nW77u1sj2+3YlhcNWT7TODMoahb0gLbPak7dafu1D1S6u6vyq6hu4FtWuYnlsvalpG0PrA5xUnjiIioSZWJYD6wk6TJkkYDhwFz+pWZA/xjOX0IcIWr6quKiIi2Kusasr1S0gxgHsXlo+fYXijpNGCB7TnATOD7kpYAD1Mki3XNkHRJpe7UnbpTd10qO1kcERHDQ+4sjohouCSCiIiGSyIYgKRpkm6VtETSSTXXfY6kB8r7LOqsdxtJv5C0SNJCSSfUWPeGkq6V9Puy7k/VVXdLDKMk/U7ST4eg7mWSbpJ0g6QFNdc9VtJsSbdIWizpDTXVu0v5fvtej0n6YB11l/V/qPy3drOkH0jasMa6TyjrXVjnex6Q7bz6vShObt8ObA+MBn4PTKmx/r2A3YCba37fWwG7ldNjgD/U9b4BAZuW0xsA1wB71Pz+TwQuAH5aZ71l3cuAcXXXW9Z9HnBkOT0aGDsEMYwC7qO46amO+iYAdwAblfOzgOk11f1K4GZgY4oLdi4HdhyK777vlRZBe90Mj1EZ2/9NcRVVrWzfa/v6cvpxYDHFf5g66rbtP5WzG5Sv2q5kkDQR+Afg7LrqXBdI2pziwGMmgO2nbD86BKHsC9xu+84a61wf2Ki8h2lj4J6a6v0b4Brbf7a9ErgSOLimuttKImhvArC8ZX4FNf0griskTQJeS3FkXledoyTdADwAXGa7trqBrwL/DDxbY52tDFwq6bpySJW6TAZ6ge+W3WJnS9qkxvr7HAb8oK7KbN8NfAm4C7gX+KPtS2uq/mbgzZK2lLQx8Pc8/+bb2iURxAtI2hT4IfBB24/VVa/tZ2zvSnEX+lRJr6yjXklvAx6wfV0d9Q3gTbZ3oxit9zhJe9VU7/oU3ZD/bvu1wBNA3efERgMHAhfVWOcWFK38ycDWwCaSjqijbtuLKUZavhS4BLgBeKaOugeSRNBeN8NjjEiSNqBIAv9h++KhiKHsmvgFMK2mKt8IHChpGUU34D6Szq+pbuC5I1RsPwD8iKJ7sg4rgBUtra/ZFImhTgcA19u+v8Y69wPusN1r+2ngYmDPuiq3PdP262zvBTxCcT5uyCQRtNfN8BgjTjkE+Exgse2v1Fz3eEljy+mNgP2BW+qo2/bJtifankTxXV9hu5ajQwBJm0ga0zcN/C1F90HlbN8HLJe0S7loX2BRHXW3OJwau4VKdwF7SNq4/He/L8U5sVpIekn5d1uK8wMX1FV3O8Ni9NG6eYDhMeqqX9IPgL2BcZJWAJ+0PbOGqt8IvBe4qeyrB/iY7bk11L0VcF75QKP1gFm2a7+Mc4i8FPhR+SiO9YELbF9SY/3HA/9RHvQsBd5fV8Vl4tsfOKauOgFsXyNpNnA9sBL4HfUO+fBDSVsCTwPHDdEJ+udkiImIiIZL11BERMMlEURENFwSQUREwyURREQ0XBJBRETDJRFERDRcEkFERMP9f9TbtPnh8O6mAAAAAElFTkSuQmCC\n",
+      "image/png": "iVBORw0KGgoAAAANSUhEUgAAAYIAAAEICAYAAABS0fM3AAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjMuMSwgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/d3fzzAAAACXBIWXMAAAsTAAALEwEAmpwYAAAbi0lEQVR4nO3debxdZXn28d9FIDKFQRIVEiDMNk6IERAVZWpDq2AREV4nrEwtsSi+VlTUSp3qhFWxCgRBKfACgo0WZShKHYGAKIRBwhzGMAmiLxC4+sd6Dm6O++yzMqx1yFnX9/PZn6z5vvc+sO+9nmetZ8k2ERHRXSuNdQIRETG2UggiIjouhSAiouNSCCIiOi6FICKi41IIIiI6LoUgoiZJlrR5mf66pI8s5XF+L2nT5ZvdwHiS9E1JD0i6pK24seJIIRiHJN0sadc+y18r6cnyRTT0+l7P+i0lnSHpXkm/k/QbSYdLmrCM+cyWNE/So5JOXMJ995H0c0l/kPTjUbbtfX8PS7pO0juXJfeR2D7E9r+Mtp2kH0s6YNi+a9q+sYm8RvAqYDdgmu1tl/VgkqaXorjysqcWzwQpBN1zR/kiGnq9HkDSZsDFwG3Ai2yvDbwJmAlMWtaYwCeAE5Zi3/uBLwGfqRvL9prAWsAHgOMkzRi+Uce+xDYGbrb9yJLu2LHPqbNSCGLIx4Gf2z7c9p0Atq+z/X9sPzh8Y0k7SbqyZ/58SZf2zP9E0hvKcc6y/V3gvj7HWVfS9yUtKk0X35c0bWi97Qtsn05VTGpz5bvAA8AMSftL+pmkoyXdB/yzpGdJ+rykWyXdXZp7VuvJ7f2S7pR0h6S/G5b3iZI+0TO/p6QrJD0k6QZJsyR9Eng18NVylvLVsm1vE9Pakr5V3v8tko6UtFJZt7+kn5YcH5B0k6Tde2LuL+nGcvZzk6S39Pl83wUcD7yi5PDxsvxASQsk3S9prqQNevaxpEMlXQ9cP9pnXT6Lr0n6QYnxM0nPk/Slkve1kl7as/0R5TN6WNLVkv62Z90ESV8oZ6U3lbPJp84+yuc1p/xdbpf0iWU9Y40UgviTXYEzl2D7XwJbSJosaRXgxcAGkiaVL9OZwE9qHGcl4JtUv1o3Av4IfHWJMu9D0krlC2YdYKhgbQfcCDwX+CTVWcaWwNbA5sBU4KNl/1nA/6VqUtmC6vMZKda2wLeA95d4O1L9Av8w1Wcwu5x9ze6z+1eAtYFNgdcAbwd6m7O2A64DJgOfBeaosgbwZWB325OAHYArhh/c9hzgEOAXJYePSdoZ+DSwD7A+cAtw2rBd31Bi/9nZ1Aj2AY4seT4K/AK4vMyfCXyxZ9sbqArk2lQ/QE6WtH5ZdyCwO9XfZJuSR68TgcVUf6+XAn8JHEAsG9t5jbMXcDOwa5/lrwWeBB7see1T1j0OzFrCOD8B9gK2B84DTgdmATsBv+mz/SeAE0c55tbAA32WHwD8eJR9e9/f/VRfjPuWdfsDt/ZsK+ARYLOeZa8AbirTJwCf6Vm3JWBg8zJ/IvCJMv0N4OgRcvoxcMCwZab6IpsAPAbM6Fl38ND7LDkv6Fm3etn3ecAa5X2+EVhtlM9lf+CnPfNzgM/2zK9Z/v7Te/LbecDxppdtVu75LI7rWf9u4Jqe+RcBDw443hXAnmX6QuDgnnW7DsWiKuCP9r5fYD/gR23/PzbeXmn/6547bE/rs/w+ql+HfUn6OvDWMvsp258CLqL68l1Yph+g+lX7aJkflaTVgaOpCsi6ZfEkSRNsP1HnGMOM9P6g6v8YMoXqi/UySU+lQ/XlDLABcFnP9rcMiLkhcM6Sp8pkYJVhx76F6sxkyF1DE7b/UHJd0/Zdkt5MddYyR9LPgPfZvrZG3A2ofq0PHff3pblsKtWPCHj6Z1XH3T3Tf+wzv+bQjKS3A4dTFRTKusk9ufXG7p3emOrzurPnb7bSUuQaw6RpKIZcQPXrsi9XV8kMdTB/qiweKgQ7lumLqArBa6hZCID3AVsB29leqxwLqi/l5a13qN17qb6gXmB7nfJa21VHM8CdVF/wQzYacNzbgM1qxBzuXqpf4hsPi3P7gH3+dGD7XNu7URXwa4Hj6uxH1d/yVMzSzLTesLiNDEssaWOqPGcD69leB7iKP/297wR6C3nv3+A2qh8Zk3v+ZmvZfkETuXZJCsH4tYqkVXteo539fQzYQdLnJD0PQNLmkk6WtM4I+/yc6kt8W+AS2/OpvmC2A/5naCNJK0talerX9oRh+Uyi+kJ+UNKzSx707Duh7LsysFLZd5X6H0N/tp+k+kI6WtJzSqypkv6qbHI6sL+kGeWs5WMjHAqqppZ3Stql9E1MlfT8su5uqvb/fjk8UeJ8svStbEz1S/nk0fKX9NzSQb0G1Zfj76maxeo4teS7taRnAZ8CLrZ9c839l8UaVEVmEYCqy3tf2LP+dOCw8hmuQ3XlFwCuLmI4D/iCpLXKZ72ZpNe0kPe4lkIwfp1D9QU79PrnQRvbvoGqjXw6MF/S74DvAPOAh0fY5xGqJob5th8ri38B3GL7np5Njyw5HEHVvPTHsgyqS0NXo/p1/Evgh8PCvK1s/+9UHYx/pP4v39F8AFgA/FLSQ1RnRVuV9/aDktuFZZsLRzqI7UuoOniPBn5HdTY09Iv734C9y9UzX+6z+7up+ipuBH4KnEK9y2xXoioad1D1h7wG+Psa+2H7AuAjVH/fO6nOZvats++ysn018AWq/07upuo/+FnPJsdRfdn/BvgV1X/Hi4GhZsK3AxOBq6maIs9kQJNm1KPS4RIR8YxTLpf9uu2NR904llrOCCLiGUPSapL+ujQnTqVqkjt7rPMa73JGEBHPGKU/5iLg+VTNgP8FHGb7oTFNbJxLIYiI6LhGm4ZU3WZ/XbmV/Yg+6/dXdWv9FeWVOwQjIlrW2A1lZfyPY6hu0V8IXCppbrlqoNf/c/9b7/uaPHmyp0+fvvwSjYjogMsuu+xe21P6rWvyzuJtqW6PvxFA0mnAnlSXfS216dOnM2/evOWQXkREd0ga8e74JpuGpvL0W78X8vRb54e8UdW492dK2rDPeiQdpGo8+3mLFi1qIteIiM4a68tHv0c10NWLgfOBk/ptZPtY2zNtz5wype+ZTURELKUmC8HtPH2ckGkMG0PF9n22Hy2zxwMvazCfiIjoo8lCcCnVePWbSJpIdQv73N4NesYgB9gDuKbBfCIioo/GOottL5Y0GziXarCxE2zPl3QUMM/2XOAfJe1BNZbI/VTjpkdERItWuBvKZs6c6Vw1FBGxZCRdZntmv3Vj3VkcERFjLIUgIqLjUggiIjouzyzugKPP/23jMd6725aNx4iIZuSMICKi41IIIiI6LoUgIqLjUggiIjouhSAiouNSCCIiOi6FICKi41IIIiI6LoUgIqLjUggiIjouhSAiouNSCCIiOi6FICKi41IIIiI6LoUgIqLjUggiIjouhSAiouNSCCIiOi6FICKi41IIIiI6LoUgIqLjUggiIjouhSAiouNSCCIiOi6FICKi41IIIiI6LoUgIqLjUggiIjouhSAiouNSCCIiOq7RQiBplqTrJC2QdMSA7d4oyZJmNplPRET8ucYKgaQJwDHA7sAMYD9JM/psNwk4DLi4qVwiImJkTZ4RbAsssH2j7ceA04A9+2z3L8C/Av+/wVwiImIETRaCqcBtPfMLy7KnSNoG2ND2fw06kKSDJM2TNG/RokXLP9OIiA4bs85iSSsBXwTeN9q2to+1PdP2zClTpjSfXEREhzRZCG4HNuyZn1aWDZkEvBD4saSbge2BuekwjohoV5OF4FJgC0mbSJoI7AvMHVpp+3e2J9uebns68EtgD9vzGswpIiKGaawQ2F4MzAbOBa4BTrc9X9JRkvZoKm5ERCyZlZs8uO1zgHOGLfvoCNu+tslcIiKiv9xZHBHRcSkEEREdl0IQEdFxKQQRER2XQhAR0XEpBBERHZdCEBHRcSkEEREdN2ohkPRuSeu2kUxERLSvzhnBc4FLJZ1enjimppOKiIj2jFoIbB8JbAHMAfYHrpf0KUmbNZxbRES0oFYfgW0Dd5XXYmBd4ExJn20wt4iIaMGog85JOgx4O3AvcDzwftuPlwfLXA/8U7MpRkREk+qMPvpsYC/bt/QutP2kpNc1k1ZERLSlTtPQpsOLgKRvA9i+ppGsIiKiNXUKwQt6ZyRNAF7WTDoREdG2EQuBpA9Kehh4saSHyuth4B7gP1vLMCIiGjViIbD9aduTgM/ZXqu8Jtlez/YHW8wxIiIaNGJnsaTn274WOEPSNsPX27680cwiIqIVg64aeh9wIPCFPusM7NxIRhER0aoRC4HtA8u/O7WXTkREtG1Q09Beg3a0fdbyTyciIto2qGno9QPWGUghiIgYBwY1Db2zzUQiImJsDGoaeqvtkyUd3m+97S82l1ZERLRlUNPQGuXfSW0kEhERY2NQ09A3yr8fby+diIhoW51HVW4q6XuSFkm6R9J/Stq0jeQiIqJ5dQadOwU4HVgf2AA4Azi1yaQiIqI9dQrB6ra/bXtxeZ0MrNp0YhER0Y5BVw09u0z+QNIRwGlU9w+8GTinhdwiIqIFg64auozqi19l/uCedQYyAmlExDgw6KqhTdpMJCIixkadZxYj6YXADHr6Bmx/q6mkIiKiPXUuH/0Y8JXy2gn4LLBHnYNLmiXpOkkLSj/D8PWHSLpS0hWSfippxhLmHxERy6jOVUN7A7sAd5Xxh14CrD3aTuXZxscAu1OdTezX54v+FNsvsr01VYHJsBURES2rUwj+aPtJYLGktaieWbxhjf22BRbYvtH2Y1RXHe3Zu4Hth3pm16DqhI6IiBbV6SOYJ2kd4DiqK4l+D/yixn5Tgdt65hcC2w3fSNKhwOHARPLUs4iI1o16RmD7H2w/aPvrwG7AO5bnENW2j7G9GfAB4Mh+20g6SNI8SfMWLVq0vEJHRAT1moaQtJekLwLvBjareezbeXoT0rSybCSnAW/ot8L2sbZn2p45ZcqUmuEjIqKOOlcNfQ04BLgSuAo4WNIxNY59KbCFpE0kTQT2BeYOO/YWPbN/A1xfN/GIiFg+6vQR7Az8hW0DSDoJmD/aTrYXS5oNnAtMAE6wPV/SUcA823OB2ZJ2BR4HHgDesZTvIyIillKdQrAA2Ai4pcxvWJaNyvY5DBuXyPZHe6YPq5dmREQ0ZdCgc9+jupxzEnCNpEvKqm2BS0baLyIiViyDzgg+31oWERExZgYNOnfR0LSk5wIvL7OX2L6n6cQiIqIdda4a2oeqKehNwD7AxZL2bjqxiIhoR53O4g8DLx86C5A0BbgAOLPJxCIioh11bihbaVhT0H0194uIiBVAnTOCH0o6lz89sD6PqoyIGEcGFgJJAr5M1VH8qrL4WNtnN51YRES0Y2AhsG1J59h+EXBWSzlFRESL6rT1Xy7p5aNvFhERK6I6fQTbAW+VdDPwCCCqk4UXN5lYRES0o04h+KvGs4iIiDEzaKyh5wAfAjanGoL608MeLRkREePAoD6Cb1E1BX0FWJPq6qGIiBhnBjUNrW/7w2X6XEmXt5FQRES0a7T7CNal6hwGmNA7b/v+hnOLiIgWDCoEawOX8adCADB0VmBg06aSioiI9gwahnp6i3lERMQYyeBxEREdl0IQEdFxKQQRER036IayZw/aMVcNRUSMD4OuGrqM6uogARsBD5TpdYBbgU2aTi4iIpo3YtOQ7U1sb0r1WMrX255sez3gdcB5bSUYERHNqtNHsL3tp55IZvsHwA7NpRQREW2qM/roHZKOBE4u828B7mgupYiIaFOdM4L9gCnA2VRPKZtSlkVExDgw6hlBuTroMElr2H6khZwiIqJFo54RSNpB0tXANWX+JZK+1nhmERHRijpNQ0dTPaXsPgDbvwZ2bDKpiIhoT607i23fNmzREw3kEhERY6DOVUO3SdoBsKRVgMMozUQREbHiq3NGcAhwKDAVuB3YGviHBnOKiIgW1Tkj2Mr2W3oXSHol8LNmUoqIiDbVOSP4Ss1lf0bSLEnXSVog6Yg+6w+XdLWk30j6b0kb1zluREQsP4NGH30F1VASUyQd3rNqLWDCaAeWNAE4BtgNWAhcKmmu7at7NvsVMNP2HyT9PfBZ4M1L/jYiImJpDTojmAisSVUsJvW8HgL2rnHsbYEFtm+0/RhwGrBn7wa2f2T7D2X2l8C0JUs/IiKW1aBnFl8EXCTpRNu3LMWxpwK9l50uBLYbsP27gB8sRZyIiFgGdfoIjpe0ztCMpHUlnbs8k5D0VmAm8LkR1h8kaZ6keYsWLVqeoSMiOq9OIZhs+8GhGdsPAM+psd/twIY989PKsqeRtCvwYWAP24/2O5DtY23PtD1zypQpNUJHRERddQrBk5I2GpopV/a4xn6XAltI2kTSRGBfYG7vBpJeCnyDqgjcUz/tiIhYXurcR/Bh4KeSLqJ6VOWrgYNG28n2YkmzgXOprjI6wfZ8SUcB82zPpWoKWhM4QxLArbb3WLq3EhERS6POMNQ/lLQNsH1Z9B7b99Y5eHmy2TnDln20Z3rXJcg1IiIaMGLTkKTnl3+3oXp4/R3ltVFZFhER48CgM4L3AQcCX+izzsDOjWQUEbGUjj7/t43HeO9uWzYeo22D7iM4sPy7U3vpRERE2wYNMbHXoB1tn7X804mIiLYNahp6ffn3OVRjDl1Y5ncCfk71IPuIiFjBDWoaeieApPOAGbbvLPPrAye2kl1ERDSuzg1lGw4VgeJuqquIIiJiHKhzQ9l/l7GFTi3zbwYuaC6liIhoU50bymZL+ltgx7LoWNtnN5tWRES0pc4ZAcDlwMO2L5C0uqRJth9uMrGIiGjHqH0Ekg4EzqQaHA6q5wx8t8GcIiKiRXU6iw8FXkn1ZDJsX0+9YagjImIFUKcQPFoeNQmApJWpNwx1RESsAOoUgoskfQhYTdJuwBnA95pNKyIi2lKnEHwAWARcCRxMNaz0kU0mFRER7Rl41ZCkCcB8288HjmsnpYiIaNPAMwLbTwDX9T6qMiIixpc69xGsC8yXdAnwyNDCPFIyImJ8qFMIPtJ4FhERMWYGPY9gVeAQYHOqjuI5the3lVhERLRjUB/BScBMqiKwO/0fWRkRESu4QU1DM2y/CEDSHOCSdlKKiIg2DTojeHxoIk1CERHj16AzgpdIeqhMi+rO4ofKtG2v1Xh2ERHRuEGPqpzQZiIRETE26gwxERER41gKQUREx6UQRER0XApBRETHpRBERHRcCkFERMelEEREdFwKQUREx6UQRER0XApBRETHNVoIJM2SdJ2kBZKO6LN+R0mXS1osae8mc4mIiP4aKwTlwffHUD3LYAawn6QZwza7FdgfOKWpPCIiYrA6j6pcWtsCC2zfCCDpNGBP4OqhDWzfXNY92WAeTzn6/N82HuO9u23ZeIyIiOWpyaahqcBtPfMLy7IlJukgSfMkzVu0aNFySS4iIiorRGex7WNtz7Q9c8qUKWOdTkTEuNJkIbgd2LBnflpZFhERzyBNFoJLgS0kbSJpIrAvMLfBeBERsRQaKwTlOcezgXOBa4DTbc+XdJSkPQAkvVzSQuBNwDckzW8qn4iI6K/Jq4awfQ5wzrBlH+2ZvpSqySgiIsbICtFZHBERzUkhiIjouBSCiIiOSyGIiOi4FIKIiI5LIYiI6LgUgoiIjkshiIjouBSCiIiOSyGIiOi4FIKIiI5LIYiI6LhGB52LyONBI575UggiIpaDFflHT5qGIiI6LoUgIqLj0jQU41rTp+vpn4jxIIUgYhxKAYwlkaahiIiOSyGIiOi4FIKIiI5LIYiI6LgUgoiIjkshiIjouBSCiIiOSyGIiOi4FIKIiI5LIYiI6LgUgoiIjkshiIjouBSCiIiOSyGIiOi4DEPdkhX5MXYRMb6lEEQ0JM8EiBVFo4VA0izg34AJwPG2PzNs/bOAbwEvA+4D3mz75iZziohm5ex3xdNYH4GkCcAxwO7ADGA/STOGbfYu4AHbmwNHA//aVD4REdFfk53F2wILbN9o+zHgNGDPYdvsCZxUps8EdpGkBnOKiIhhZLuZA0t7A7NsH1Dm3wZsZ3t2zzZXlW0Wlvkbyjb3DjvWQcBBZXYr4LpGku5vMnDvqFsldmIndmI/s2NvbHtKvxUrRGex7WOBY8citqR5tmcmdmIndmKPl9jDNdk0dDuwYc/8tLKs7zaSVgbWpuo0joiIljRZCC4FtpC0iaSJwL7A3GHbzAXeUab3Bi50U21VERHRV2NNQ7YXS5oNnEt1+egJtudLOgqYZ3suMAf4tqQFwP1UxeKZZkyapBI7sRM7sdvSWGdxRESsGDLWUEREx6UQRER0XArBCCTNknSdpAWSjmg59gmS7in3WbQZd0NJP5J0taT5kg5rMfaqki6R9OsS++Ntxe7JYYKkX0n6/hjEvlnSlZKukDSv5djrSDpT0rWSrpH0ipbiblXe79DrIUnvaSN2if/e8t/aVZJOlbRqi7EPK3Hnt/meR2Q7r2Evqs7tG4BNgYnAr4EZLcbfEdgGuKrl970+sE2ZngT8tq33DQhYs0yvAlwMbN/y+z8cOAX4fptxS+ybgcltxy2xTwIOKNMTgXXGIIcJwF1UNz21EW8qcBOwWpk/Hdi/pdgvBK4CVqe6YOcCYPOx+NsPvXJG0F+d4TEaY/t/qK6iapXtO21fXqYfBq6h+h+mjdi2/fsyu0p5tXYlg6RpwN8Ax7cV85lA0tpUPzzmANh+zPaDY5DKLsANtm9pMebKwGrlHqbVgTtaivsXwMW2/2B7MXARsFdLsftKIehvKnBbz/xCWvpCfKaQNB14KdUv87ZiTpB0BXAPcL7t1mIDXwL+CXiyxZi9DJwn6bIypEpbNgEWAd8szWLHS1qjxfhD9gVObSuY7duBzwO3AncCv7N9XkvhrwJeLWk9SasDf83Tb75tXQpB/BlJawLfAd5j+6G24tp+wvbWVHehbyvphW3ElfQ64B7bl7URbwSvsr0N1Wi9h0rasaW4K1M1Q/677ZcCjwBt94lNBPYAzmgx5rpUZ/mbABsAa0h6axuxbV9DNdLyecAPgSuAJ9qIPZIUgv7qDI8xLklahaoI/Ifts8Yih9I08SNgVkshXwnsIelmqmbAnSWd3FJs4KlfqNi+BzibqnmyDQuBhT1nX2dSFYY27Q5cbvvuFmPuCtxke5Htx4GzgB3aCm57ju2X2d4ReICqP27MpBD0V2d4jHGnDAE+B7jG9hdbjj1F0jplejVgN+DaNmLb/qDtabanU/2tL7Tdyq9DAElrSJo0NA38JVXzQeNs3wXcJmmrsmgX4Oo2YvfYjxabhYpbge0lrV7+u9+Fqk+sFZKeU/7diKp/4JS2YvezQow+2jaPMDxGW/ElnQq8FpgsaSHwMdtzWgj9SuBtwJWlrR7gQ7bPaSH2+sBJ5YFGKwGn2279Ms4x8lzg7PIojpWBU2z/sMX47wb+o/zouRF4Z1uBS+HbDTi4rZgAti+WdCZwObAY+BXtDvnwHUnrAY8Dh45RB/1TMsRERETHpWkoIqLjUggiIjouhSAiouNSCCIiOi6FICKi41IIIiI6LoUgIqLj/hdRB2LXFx7MKAAAAABJRU5ErkJggg==\n",
       "text/plain": [
        "<Figure size 432x288 with 1 Axes>"
       ]
@@ -436,16 +531,7 @@
    "cell_type": "code",
    "execution_count": 15,
    "metadata": {},
-   "outputs": [
-    {
-     "name": "stderr",
-     "output_type": "stream",
-     "text": [
-      "/workspace/brevitas/brevitas_examples/bnn_pynq/models/LFC.py:80: TracerWarning: torch.tensor results are registered as constants in the trace. You can safely ignore this warning if you use this function to create tensors out of constant variables that would be the same every time you call this function. In any other case, this might cause the trace to be incorrect.\n",
-      "  x = 2.0 * x - torch.tensor([1.0], device=x.device)\n"
-     ]
-    }
-   ],
+   "outputs": [],
    "source": [
     "import brevitas.onnx as bo\n",
     "export_onnx_path = \"/tmp/LFCW1A1.onnx\"\n",
@@ -469,6 +555,7 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
+      "Stopping http://0.0.0.0:8081\n",
       "Serving '/tmp/LFCW1A1.onnx' at http://0.0.0.0:8081\n"
      ]
     },
@@ -522,10 +609,10 @@
     {
      "data": {
       "text/plain": [
-       "input: \"40\"\n",
+       "input: \"37\"\n",
        "input: \"38\"\n",
-       "output: \"41\"\n",
-       "op_type: \"Add\""
+       "output: \"40\"\n",
+       "op_type: \"MatMul\""
       ]
      },
      "execution_count": 17,
@@ -554,7 +641,13 @@
     {
      "data": {
       "text/plain": [
-       "array(-0.5, dtype=float32)"
+       "array([[-1., -1.,  1., ..., -1.,  1., -1.],\n",
+       "       [ 1.,  1., -1., ...,  1., -1.,  1.],\n",
+       "       [-1., -1., -1., ...,  1., -1.,  1.],\n",
+       "       ...,\n",
+       "       [ 1., -1., -1., ..., -1., -1.,  1.],\n",
+       "       [ 1., -1., -1., ...,  1.,  1.,  1.],\n",
+       "       [ 1., -1.,  1., ...,  1., -1.,  1.]], dtype=float32)"
       ]
      },
      "execution_count": 18,
@@ -581,7 +674,7 @@
     {
      "data": {
       "text/plain": [
-       "<DataType.FLOAT32: 16>"
+       "<DataType.BIPOLAR: 34>"
       ]
      },
      "execution_count": 19,
@@ -601,7 +694,7 @@
     {
      "data": {
       "text/plain": [
-       "[]"
+       "[784, 1024]"
       ]
      },
      "execution_count": 20,
@@ -643,7 +736,6 @@
      "name": "stdout",
      "output_type": "stream",
      "text": [
-      "\n",
       "Stopping http://0.0.0.0:8081\n",
       "Serving '/tmp/LFCW1A1-clean.onnx' at http://0.0.0.0:8081\n"
      ]
@@ -689,8 +781,8 @@
     {
      "data": {
       "text/plain": [
-       "array([[-1.5095654 , -2.915617  ,  0.764004  , -1.8118242 , -2.308991  ,\n",
-       "        -2.6900144 , -1.520713  , -3.4965858 , -0.47711682, -2.9628415 ]],\n",
+       "array([[-1.3736125, -3.5715756,  0.1768887, -1.9529207, -2.1233053,\n",
+       "        -3.9293835, -2.1914592, -3.9634604, -0.7772659, -1.9869976]],\n",
        "      dtype=float32)"
       ]
      },