diff --git a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py index 7b8a1bf6b83175cfda041cfc49a22273fd696d8e..3029e09d48e2157a2e5d229119b02214b91d8538 100644 --- a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py +++ b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py @@ -40,10 +40,6 @@ from qonnx.transformation.infer_shapes import InferShapes from qonnx.util.basic import get_by_name from qonnx.util.onnx import nchw_to_nhwc -from finn.transformation.fpgadataflow.minimize_accumulator_width import ( - MinimizeAccumulatorWidth, -) - class InferConvInpGen(Transformation): """Convert Im2Col layers to ConvolutionInputGenerator layers.""" @@ -761,7 +757,6 @@ class InferBinaryMatrixVectorActivation(Transformation): graph.node.remove(n) graph_modified = True if graph_modified: - model = model.transform(MinimizeAccumulatorWidth()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) return (model, graph_modified) @@ -904,7 +899,6 @@ class InferQuantizedMatrixVectorActivation(Transformation): graph.node.remove(n) graph_modified = True if graph_modified: - model = model.transform(MinimizeAccumulatorWidth()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) return (model, graph_modified) @@ -1057,7 +1051,6 @@ class InferVectorVectorActivation(Transformation): graph.node.remove(n) graph_modified = True if graph_modified: - model = model.transform(MinimizeAccumulatorWidth()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) return (model, graph_modified) @@ -1135,7 +1128,7 @@ class InferThresholdingLayer(Transformation): PE=pe, numSteps=thl_thres_shape[1], inputDataType=idt.name, - weightDataType=idt.name, # will be set by MinimizeAccumulatorWidth + weightDataType=idt.name, # can be tightened by MinimizeAccumulatorWidth outputDataType=odt.name, numInputVectors=list(thl_in_shape[:-1]), ActVal=actval, @@ -1148,7 +1141,6 @@ class InferThresholdingLayer(Transformation): graph_modified = True if graph_modified: - model = model.transform(MinimizeAccumulatorWidth()) model = model.transform(InferShapes()) model = model.transform(InferDataTypes()) return (model, graph_modified)