From 4672031c90861297a93556a40c71a8c32db4d4e1 Mon Sep 17 00:00:00 2001 From: Yaman Umuroglu <maltanar@gmail.com> Date: Tue, 11 Feb 2020 18:50:40 +0100 Subject: [PATCH] [CustomOp] add StreamingDataflowPartition CustomOp --- src/finn/custom_op/registry.py | 2 + .../custom_op/streamingdataflowpartition.py | 65 +++++++++++++++++++ 2 files changed, 67 insertions(+) create mode 100644 src/finn/custom_op/streamingdataflowpartition.py diff --git a/src/finn/custom_op/registry.py b/src/finn/custom_op/registry.py index bd1605c96..c38a28dae 100644 --- a/src/finn/custom_op/registry.py +++ b/src/finn/custom_op/registry.py @@ -7,6 +7,7 @@ from finn.custom_op.fpgadataflow.streamingfclayer_batch import StreamingFCLayer_ from finn.custom_op.fpgadataflow.streamingmaxpool_batch import StreamingMaxPool_Batch from finn.custom_op.fpgadataflow.tlastmarker import TLastMarker from finn.custom_op.multithreshold import MultiThreshold +from finn.custom_op.streamingdataflowpartition import StreamingDataflowPartition from finn.custom_op.xnorpopcount import XnorPopcountMatMul # create a mapping of all known CustomOp names and classes @@ -18,6 +19,7 @@ custom_op["StreamingMaxPool_Batch"] = StreamingMaxPool_Batch custom_op["StreamingFCLayer_Batch"] = StreamingFCLayer_Batch custom_op["ConvolutionInputGenerator"] = ConvolutionInputGenerator custom_op["TLastMarker"] = TLastMarker +custom_op["StreamingDataflowPartition"] = StreamingDataflowPartition def getCustomOp(node): diff --git a/src/finn/custom_op/streamingdataflowpartition.py b/src/finn/custom_op/streamingdataflowpartition.py new file mode 100644 index 000000000..856ba6d56 --- /dev/null +++ b/src/finn/custom_op/streamingdataflowpartition.py @@ -0,0 +1,65 @@ +from finn.custom_op import CustomOp + +# note that the StreamingDataflowPartition node is only a meta/container node, +# it does not produce any HLS or bitfile by itself. it's a placeholder for +# a group of fpgadataflow nodes that have been separated out into a FINN-ONNX +# model of its own. + + +class StreamingDataflowPartition(CustomOp): + def get_nodeattr_types(self): + return { + "model": ("s", True, ""), + } + + def make_shape_compatible_op(self): + pass + + def infer_node_datatype(self, model): + pass + + def execute_node(self, context, graph): + # TODO add RPC execution with synthesized bitfile? + # whole-design rtlsim with PyVerilator may also be an alternative + pass + + def verify_node(self): + info_messages = [] + + # verify number of attributes + num_of_attr = 1 + if len(self.onnx_node.attribute) == num_of_attr: + info_messages.append("The number of attributes is correct") + else: + info_messages.append( + """The number of attributes is incorrect, + {} should have {} attributes""".format( + self.onnx_node.op_type, num_of_attr + ) + ) + + # verify that "domain" is set to "finn" + domain_value = self.onnx_node.domain + if domain_value == "finn": + info_messages.append("Attribute domain is set correctly") + else: + info_messages.append('Attribute domain should be set to "finn"') + + # verify that all necessary attributes exist + try: + self.get_nodeattr("model") + info_messages.append("All necessary attributes exist") + except Exception: + info_messages.append( + """The necessary attributes do not exist. + StreamingDataflowPartition needs the following attribute(s): + model""" + ) + + # verify the number of inputs + if len(self.onnx_node.input) == 1: + info_messages.append("The number of inputs is correct") + else: + info_messages.append("StreamingDataflowPartition needs 1 data input") + + return info_messages -- GitLab