From 40e224c0d95570a8615106a3ff77acf83026e6be Mon Sep 17 00:00:00 2001 From: Yaman Umuroglu <maltanar@gmail.com> Date: Wed, 25 Mar 2020 11:18:52 +0000 Subject: [PATCH] [Test] use model later on in transforms as golden for cnv-w1a1 --- .../test_convert_to_hls_layers_cnv.py | 17 ++++++++--------- 1 file changed, 8 insertions(+), 9 deletions(-) diff --git a/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py b/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py index e2df959dd..6345c93fb 100644 --- a/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py +++ b/tests/fpgadataflow/test_convert_to_hls_layers_cnv.py @@ -64,7 +64,14 @@ def test_convert_to_hls_layers_cnv_w1a1(): model = model.transform(GiveUniqueNodeNames()) model = model.transform(GiveReadableTensorNames()) model = model.transform(Streamline()) - model.save("cnv-streamline.onnx") + model = model.transform(LowerConvsToMatMul()) + model = model.transform(MakeMaxPoolNHWC()) + model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold()) + model = model.transform(ConvertBipolarMatMulToXnorPopcount()) + model = model.transform(absorb.AbsorbAddIntoMultiThreshold()) + model = model.transform(absorb.AbsorbMulIntoMultiThreshold()) + model = model.transform(RoundAndClipThresholds()) + model.save("golden.onnx") # load one of the test vectors fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz") input_tensor = np.load(fn)["arr_0"].astype(np.float32) @@ -74,15 +81,7 @@ def test_convert_to_hls_layers_cnv_w1a1(): expected_ctx = oxe.execute_onnx(model, input_dict, True) expected = expected_ctx[model.graph.output[0].name] - model = model.transform(LowerConvsToMatMul()) - model = model.transform(MakeMaxPoolNHWC()) - model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold()) - model = model.transform(ConvertBipolarMatMulToXnorPopcount()) - model = model.transform(absorb.AbsorbAddIntoMultiThreshold()) - model = model.transform(absorb.AbsorbMulIntoMultiThreshold()) - model = model.transform(RoundAndClipThresholds()) model = model.transform(to_hls.InferBinaryStreamingFCLayer()) - for node in model.graph.node: if node.op_type == "StreamingFCLayer_Batch": inst = getCustomOp(node) -- GitLab