diff --git a/tests/transformation/streamline/test_streamline_cnv.py b/tests/transformation/streamline/test_streamline_cnv.py
new file mode 100644
index 0000000000000000000000000000000000000000..ff82427d40530357e96f3e57755fefdd92bf6158
--- /dev/null
+++ b/tests/transformation/streamline/test_streamline_cnv.py
@@ -0,0 +1,77 @@
+# Copyright (c) 2020, Xilinx
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright notice, this
+#   list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright notice,
+#   this list of conditions and the following disclaimer in the documentation
+#   and/or other materials provided with the distribution.
+#
+# * Neither the name of FINN nor the names of its
+#   contributors may be used to endorse or promote products derived from
+#   this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+import brevitas.onnx as bo
+import numpy as np
+import pytest
+import pkg_resources as pk
+
+import finn.core.onnx_exec as oxe
+from finn.core.modelwrapper import ModelWrapper
+from finn.transformation.fold_constants import FoldConstants
+from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames
+from finn.transformation.infer_shapes import InferShapes
+from finn.transformation.streamline import Streamline
+from finn.util.test import get_test_model_trained
+from finn.util.basic import make_build_dir
+
+export_onnx_path = make_build_dir("test_streamline_cnv_")
+
+# act bits
+@pytest.mark.parametrize("abits", [1])
+# weight bits
+@pytest.mark.parametrize("wbits", [1])
+# network topology / size
+@pytest.mark.parametrize("size", ["CNV"])
+def test_streamline_cnv(size, wbits, abits):
+    if wbits > abits:
+        pytest.skip("No wbits > abits cases at the moment")
+    nname = "%s_%dW%dA" % (size, wbits, abits)
+    finn_onnx = export_onnx_path + "/%s.onnx" % nname
+    fc = get_test_model_trained(size, wbits, abits)
+    bo.export_finn_onnx(fc, (1, 3, 32, 32), finn_onnx)
+    model = ModelWrapper(finn_onnx)
+    model = model.transform(InferShapes())
+    model = model.transform(FoldConstants())
+    model = model.transform(GiveUniqueNodeNames())
+    model = model.transform(GiveReadableTensorNames())
+    # load one of the test vectors
+    fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz")
+    input_tensor = np.load(fn)["arr_0"].astype(np.float32)
+    assert input_tensor.shape == (1, 3, 32, 32)
+    # run using FINN-based execution
+    input_dict = {"global_in": input_tensor}
+    expected_ctx = oxe.execute_onnx(model, input_dict, True)
+    expected = expected_ctx[model.graph.output[0].name]
+    model.save("orig_cnv.onnx")
+    model = model.transform(Streamline())
+    produced_ctx = oxe.execute_onnx(model, input_dict, True)
+    produced = produced_ctx[model.graph.output[0].name]
+    assert np.isclose(expected, produced, atol=1e-3).all()
+    assert model.graph.node[2].op_type == "MultiThreshold"
+    model.save("streamlined_cnv.onnx")