diff --git a/tests/transformation/streamline/test_streamline_cnv.py b/tests/transformation/streamline/test_streamline_cnv.py new file mode 100644 index 0000000000000000000000000000000000000000..ff82427d40530357e96f3e57755fefdd92bf6158 --- /dev/null +++ b/tests/transformation/streamline/test_streamline_cnv.py @@ -0,0 +1,77 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import brevitas.onnx as bo +import numpy as np +import pytest +import pkg_resources as pk + +import finn.core.onnx_exec as oxe +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.fold_constants import FoldConstants +from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.streamline import Streamline +from finn.util.test import get_test_model_trained +from finn.util.basic import make_build_dir + +export_onnx_path = make_build_dir("test_streamline_cnv_") + +# act bits +@pytest.mark.parametrize("abits", [1]) +# weight bits +@pytest.mark.parametrize("wbits", [1]) +# network topology / size +@pytest.mark.parametrize("size", ["CNV"]) +def test_streamline_cnv(size, wbits, abits): + if wbits > abits: + pytest.skip("No wbits > abits cases at the moment") + nname = "%s_%dW%dA" % (size, wbits, abits) + finn_onnx = export_onnx_path + "/%s.onnx" % nname + fc = get_test_model_trained(size, wbits, abits) + bo.export_finn_onnx(fc, (1, 3, 32, 32), finn_onnx) + model = ModelWrapper(finn_onnx) + model = model.transform(InferShapes()) + model = model.transform(FoldConstants()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + # load one of the test vectors + fn = pk.resource_filename("finn", "data/cifar10/cifar10-test-data-class3.npz") + input_tensor = np.load(fn)["arr_0"].astype(np.float32) + assert input_tensor.shape == (1, 3, 32, 32) + # run using FINN-based execution + input_dict = {"global_in": input_tensor} + expected_ctx = oxe.execute_onnx(model, input_dict, True) + expected = expected_ctx[model.graph.output[0].name] + model.save("orig_cnv.onnx") + model = model.transform(Streamline()) + produced_ctx = oxe.execute_onnx(model, input_dict, True) + produced = produced_ctx[model.graph.output[0].name] + assert np.isclose(expected, produced, atol=1e-3).all() + assert model.graph.node[2].op_type == "MultiThreshold" + model.save("streamlined_cnv.onnx")