diff --git a/docs/finn/getting_started.rst b/docs/finn/getting_started.rst index feba21ea20d6445b88f96cf8ed2ca57598e614f4..5beabeb2980840fd1dbd2ee5b058738fa8553152 100644 --- a/docs/finn/getting_started.rst +++ b/docs/finn/getting_started.rst @@ -18,7 +18,7 @@ Requirements * A working Vivado 2019.1 installation * A `VIVADO_PATH` environment variable pointing to the Vivado installation directory (e.g. the directory where settings64.sh is located) * (optional) A PYNQ board with a network connection - * the ``bitstring`` package must be installed on the PYNQ: ``sudo pip install bitstring`` + * the ``bitstring`` package must be installed on the PYNQ: ``sudo pip3 install bitstring`` Running FINN in Docker ====================== diff --git a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py index 9b73ba1e100aa83fd19aa8799195c99891fca3fd..b6c992e4b5ea1ced088928b3d9a4db381d82db22 100644 --- a/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py +++ b/src/finn/custom_op/fpgadataflow/streamingfclayer_batch.py @@ -290,12 +290,15 @@ class StreamingFCLayer_Batch(HLSCustomOp): return out_width def get_weightstream_width(self): - """Returns weight stream width. Used in decoupled mode.""" - pe = self.get_nodeattr("PE") - simd = self.get_nodeattr("SIMD") - wp = self.get_weight_datatype().bitwidth() - w_width = pe * simd * wp - return w_width + """Returns weight stream width. Used only in decoupled mode.""" + if self.get_nodeattr("mem_mode") == "decoupled": + pe = self.get_nodeattr("PE") + simd = self.get_nodeattr("SIMD") + wp = self.get_weight_datatype().bitwidth() + w_width = pe * simd * wp + return w_width + else: + return 0 def get_weightstream_width_padded(self): """Returns weight stream width padded to a multiple of 8. This is required diff --git a/src/finn/custom_op/fpgadataflow/templates.py b/src/finn/custom_op/fpgadataflow/templates.py index 1a8216f64bf71b7fb9f1f8becf4732970b5bf451..1da60a5124fa86b4336bae8fd1a587672f2f2e6f 100644 --- a/src/finn/custom_op/fpgadataflow/templates.py +++ b/src/finn/custom_op/fpgadataflow/templates.py @@ -99,6 +99,7 @@ set_top $config_toplevelfxn open_solution sol1 set_part $config_proj_part +config_compile -ignore_long_run_time -disable_unroll_code_size_check config_interface -m_axi_addr64 config_rtl -auto_prefix $EXTRA_DIRECTIVES$ diff --git a/src/finn/custom_op/quantavgpool2d.py b/src/finn/custom_op/quantavgpool2d.py index 3bc328a9f4f6670041d33491d58af6c553bafac9..fb5c78bc0c8419ba519c5c3113d9b0c7ae2dd3b7 100644 --- a/src/finn/custom_op/quantavgpool2d.py +++ b/src/finn/custom_op/quantavgpool2d.py @@ -4,6 +4,7 @@ import onnxruntime as rt from finn.custom_op import CustomOp from finn.core.datatype import DataType +from finn.custom_op.maxpoolnhwc import compute_pool_output_dim class QuantAvgPool2d(CustomOp): @@ -16,20 +17,51 @@ class QuantAvgPool2d(CustomOp): "kernel": ("i", True, 1), "ibits": ("i", True, 1), "obits": ("i", True, 1), + # determines if values are signed (set to "1") or unsigned ("0") "signed": ("i", True, 0), + # data layout attribute can be set to "NCHW" or "NHWC" + "data_layout": ("s", False, "NCHW"), } def make_shape_compatible_op(self, model): node = self.onnx_node k = self.get_nodeattr("kernel") s = self.get_nodeattr("stride") - return helper.make_node( - "AveragePool", - inputs=[node.input[0]], - outputs=[node.output[0]], - kernel_shape=[k, k], - strides=[s, s], - ) + data_layout = self.get_nodeattr("data_layout") + if data_layout == "NCHW": + return helper.make_node( + "AveragePool", + inputs=[node.input[0]], + outputs=[node.output[0]], + kernel_shape=[k, k], + strides=[s, s], + ) + elif data_layout == "NHWC": + iname = node.input[0] + ishape = model.get_tensor_shape(iname) + (n, hi, wi, c) = ishape + ho = compute_pool_output_dim(hi, k, s) + wo = compute_pool_output_dim(wi, k, s) + oshape = (n, ho, wo, c) + # implement tensor with correct shape + values = np.random.randn(*oshape).astype(np.float32) + return helper.make_node( + "Constant", + inputs=[], + outputs=[node.output[0]], + value=helper.make_tensor( + name="const_tensor", + data_type=TensorProto.FLOAT, + dims=values.shape, + vals=values.flatten().astype(float), + ), + ) + + else: + raise Exception( + """Datalayout for QuantAvgPool2d is set to an invalid value. + Has to be set to "NCHW" or "NHWC".""" + ) def infer_node_datatype(self, model): node = self.onnx_node @@ -48,8 +80,12 @@ class QuantAvgPool2d(CustomOp): node = self.onnx_node k = self.get_nodeattr("kernel") s = self.get_nodeattr("stride") - ishape = context[node.input[0]].shape + inp_values = context[node.input[0]] oshape = context[node.output[0]].shape + if self.get_nodeattr("data_layout") == "NHWC": + inp_values = inp_values.transpose(0, 3, 1, 2) + oshape = (context[node.output[0]]).transpose(0, 3, 1, 2).shape + ishape = inp_values.shape inp = helper.make_tensor_value_info(node.input[0], TensorProto.FLOAT, ishape) outp = helper.make_tensor_value_info(node.output[0], TensorProto.FLOAT, oshape) node_avgpool = helper.make_node( @@ -66,7 +102,7 @@ class QuantAvgPool2d(CustomOp): outputs=[outp], ) model_avgpool = helper.make_model(graph_avgpool) - idict = {node.input[0]: context[node.input[0]]} + idict = {node.input[0]: inp_values} sess = rt.InferenceSession(model_avgpool.SerializeToString()) result_temp = sess.run(None, idict) # remove scaling introduced by average @@ -77,7 +113,16 @@ class QuantAvgPool2d(CustomOp): max_bit_width = int(max_value).bit_length() shift_bits = max_bit_width - self.get_nodeattr("obits") result = np.right_shift(result_temp.astype(int), shift_bits) + if self.get_nodeattr("data_layout") == "NHWC": + result = result.transpose(0, 2, 3, 1) context[node.output[0]] = result.astype(np.float32) def verify_node(self): - pass + info_messages = [] + # verify that "domain" is set to "finn" + domain_value = self.onnx_node.domain + if domain_value == "finn": + info_messages.append("Attribute domain is set correctly") + else: + info_messages.append('Attribute domain should be set to "finn"') + return info_messages diff --git a/src/finn/transformation/change_datalayout.py b/src/finn/transformation/change_datalayout.py new file mode 100644 index 0000000000000000000000000000000000000000..d5b393a25e57122b059a44f70904a6dbe5bbaa3f --- /dev/null +++ b/src/finn/transformation/change_datalayout.py @@ -0,0 +1,110 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +from onnx import helper, TensorProto + +from finn.transformation import Transformation +from finn.transformation.infer_shapes import InferShapes +from finn.util.basic import get_by_name + + +class ChangeDataLayoutQuantAvgPool2d(Transformation): + """Replace QuantAvgPool2d with datalayout (N,C,H,W) with Transpose nodes + and QuantAvgPool2dNHWC with datalayout (N,H,W,C)""" + + def apply(self, model): + graph = model.graph + node_ind = 0 + graph_modified = False + for n in graph.node: + node_ind += 1 + if n.op_type == "QuantAvgPool2d" and ( + get_by_name(n.attribute, "data_layout") is None + or get_by_name(n.attribute, "data_layout").s.decode("UTF-8") == "NCHW" + ): + graph_modified = True + node_input = n.input[0] + node_output = n.output[0] + s = get_by_name(n.attribute, "stride").i + k = get_by_name(n.attribute, "kernel").i + ibits = get_by_name(n.attribute, "ibits").i + obits = get_by_name(n.attribute, "obits").i + signed = get_by_name(n.attribute, "signed").i + batchsize = model.get_tensor_shape(n.input[0])[0] # assume NCHW + channels = model.get_tensor_shape(n.input[0])[1] # assume NCHW + idim = model.get_tensor_shape(n.input[0])[-1] # assume NCHW + odim = model.get_tensor_shape(n.output[0])[-1] # assume NCHW + + # create new nodes + # NCHW -> NHWC + # create new intermediate values + inp_trans_out = helper.make_tensor_value_info( + model.make_new_valueinfo_name(), + TensorProto.FLOAT, + (batchsize, idim, idim, channels), # NHWC + ) + graph.value_info.append(inp_trans_out) + inp_trans_out = inp_trans_out.name + quantavg_out = helper.make_tensor_value_info( + model.make_new_valueinfo_name(), + TensorProto.FLOAT, + (batchsize, odim, odim, channels), + ) + graph.value_info.append(quantavg_out) + quantavg_out = quantavg_out.name + inp_trans_node = helper.make_node( + "Transpose", [node_input], [inp_trans_out], perm=[0, 2, 3, 1] + ) + quantavg_node = helper.make_node( + "QuantAvgPool2d", + [inp_trans_out], + [quantavg_out], + domain="finn", + stride=s, + kernel=k, + ibits=ibits, + obits=obits, + signed=signed, + data_layout="NHWC", + ) + # NHWC -> NCHW + out_trans_node = helper.make_node( + "Transpose", [quantavg_out], [node_output], perm=[0, 3, 1, 2] + ) + # insert nodes + graph.node.insert(node_ind, inp_trans_node) + graph.node.insert(node_ind + 1, quantavg_node) + graph.node.insert(node_ind + 2, out_trans_node) + # remove old nodes + graph.node.remove(n) + + # set shapes + model.set_tensor_shape(inp_trans_out, (batchsize, idim, idim, channels)) + model.set_tensor_shape(quantavg_out, (batchsize, odim, odim, channels)) + model = model.transform(InferShapes()) + return (model, graph_modified) diff --git a/src/finn/transformation/infer_data_layouts.py b/src/finn/transformation/infer_data_layouts.py index 9ac75578ffb911cc44cfddc2b2119b55e6abf2dd..e7a6b88239a1735d5379e165333f8356ae6f88a1 100644 --- a/src/finn/transformation/infer_data_layouts.py +++ b/src/finn/transformation/infer_data_layouts.py @@ -38,7 +38,7 @@ def _dims_to_layout(model, node, ndims): return DataLayout.NC else: if node.domain == "finn": - if node.op_type == "MultiThreshold": + if node.op_type == "MultiThreshold" or node.op_type == "QuantAvgPool2d": mt_inst = registry.getCustomOp(node) layout = mt_inst.get_nodeattr("data_layout") if layout == "NHWC" and ndims == 4: diff --git a/tests/transformation/test_change_datalayout.py b/tests/transformation/test_change_datalayout.py new file mode 100644 index 0000000000000000000000000000000000000000..66459d574957575e61ec1bec631fb7030a27cca1 --- /dev/null +++ b/tests/transformation/test_change_datalayout.py @@ -0,0 +1,112 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. +import pytest +from onnx import helper, TensorProto + +from finn.custom_op.maxpoolnhwc import compute_pool_output_dim +from finn.core.modelwrapper import ModelWrapper +from finn.core.datatype import DataType +import finn.core.data_layout as DataLayout +from finn.transformation.change_datalayout import ChangeDataLayoutQuantAvgPool2d +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_datatypes import InferDataTypes +from finn.transformation.infer_data_layouts import InferDataLayouts +from finn.transformation.general import GiveUniqueNodeNames, GiveReadableTensorNames +from finn.util.basic import gen_finn_dt_tensor +from finn.util.basic import get_by_name +import finn.core.onnx_exec as oxe + +# stride +@pytest.mark.parametrize("s", [1, 2]) +# kernel +@pytest.mark.parametrize("k", [3, 4]) +# ibits +@pytest.mark.parametrize("ibits", [4, 8]) +# obits +@pytest.mark.parametrize("obits", [2, 4]) +# signed +@pytest.mark.parametrize("signed", [False, True]) +# channels +@pytest.mark.parametrize("c", [2, 3]) +# input dimension +@pytest.mark.parametrize("idim", [6, 7]) +def test_change_datalayout_quantavgpool(s, k, ibits, obits, signed, c, idim): + n = 1 + odim = compute_pool_output_dim(idim, k, s) + # determine input FINN datatype + if signed is True: + prefix = "INT" + else: + prefix = "UINT" + dt_name = prefix + str(ibits) + dtype = DataType[dt_name] + + inp = helper.make_tensor_value_info("inp", TensorProto.FLOAT, [n, c, idim, idim]) + outp = helper.make_tensor_value_info("outp", TensorProto.FLOAT, [n, c, odim, odim]) + + node = helper.make_node( + "QuantAvgPool2d", + ["inp"], + ["outp"], + domain="finn", + stride=s, + kernel=k, + ibits=ibits, + obits=obits, + signed=signed, + data_layout="NCHW", + ) + graph = helper.make_graph( + nodes=[node], name="single-quantavgpool", inputs=[inp], outputs=[outp] + ) + + model = helper.make_model(graph) + model = ModelWrapper(model) + model = model.transform(InferShapes()) + model = model.transform(InferDataTypes()) + model = model.transform(InferDataLayouts()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model_transformed = model.transform(ChangeDataLayoutQuantAvgPool2d()) + model_transformed = model_transformed.transform(InferShapes()) + model_transformed = model_transformed.transform(InferDataTypes()) + model_transformed = model_transformed.transform(InferDataLayouts()) + model_transformed = model_transformed.transform(GiveUniqueNodeNames()) + model_transformed = model_transformed.transform(GiveReadableTensorNames()) + inp_values = gen_finn_dt_tensor(dtype, [n, c, idim, idim]) + idict = {"inp": inp_values} + assert oxe.compare_execution(model, model_transformed, idict) + assert len(model.graph.node) + 2 == len(model_transformed.graph.node) + assert model_transformed.graph.node[-1].op_type == "Transpose" + assert model_transformed.graph.node[0].op_type == "Transpose" + # check if QuantAvgPool2d node has datalayout set correctly + node = model_transformed.graph.node[1] + d_layout = get_by_name(node.attribute, "data_layout").s.decode("UTF-8") + assert d_layout == "NHWC" + assert model_transformed.get_tensor_layout(node.input[0]) == DataLayout.NHWC + assert model_transformed.get_tensor_layout(node.output[0]) == DataLayout.NHWC