From 2c4718c883d5139f828f23e9e1020b9e137d77f6 Mon Sep 17 00:00:00 2001
From: Felix Jentzsch <fepaje@mail.upb.de>
Date: Wed, 5 May 2021 16:17:52 +0200
Subject: [PATCH] Basic support for flatten layer between conv and fc

---
 docker/Dockerfile.finn_dev                    |   2 +-
 docker/finn_entrypoint.sh                     |   2 +-
 .../fpgadataflow/insert_fifo.py               |  14 +-
 src/finn/transformation/move_reshape.py       |  73 +++-
 src/finn/transformation/streamline/absorb.py  |  47 ++-
 .../test_convert_to_hls_conv_fc_transition.py | 337 ++++++++++++++++++
 6 files changed, 433 insertions(+), 42 deletions(-)
 create mode 100755 tests/fpgadataflow/test_convert_to_hls_conv_fc_transition.py

diff --git a/docker/Dockerfile.finn_dev b/docker/Dockerfile.finn_dev
index 4c8557b53..7875378ca 100644
--- a/docker/Dockerfile.finn_dev
+++ b/docker/Dockerfile.finn_dev
@@ -72,7 +72,7 @@ USER $UNAME
 
 # cloning dependency repos (as user)
 # finn-base
-RUN git clone https://github.com/Xilinx/finn-base.git /workspace/finn-base
+RUN git clone https://github.com/fpjentzsch/finn-base.git /workspace/finn-base
 # Brevitas
 RUN git clone https://github.com/Xilinx/brevitas.git /workspace/brevitas
 # CNPY
diff --git a/docker/finn_entrypoint.sh b/docker/finn_entrypoint.sh
index bd2338305..13939a2e4 100644
--- a/docker/finn_entrypoint.sh
+++ b/docker/finn_entrypoint.sh
@@ -12,7 +12,7 @@ gecho () {
 
 # checkout the correct dependency repo commits
 # the repos themselves are cloned in the Dockerfile
-FINN_BASE_COMMIT=8908c6a3f6674c4fa790954bd41c23ee5bf053df
+FINN_BASE_COMMIT=4b40ff84e7c9210325a11bf73b8b9142b776f94c
 BREVITAS_COMMIT=aff49758ec445d77c75721c7de3091a2a1797ca8
 CNPY_COMMIT=4e8810b1a8637695171ed346ce68f6984e585ef4
 HLSLIB_COMMIT=2e49322d1bbc4969ca293843bda1f3f9c05456fc
diff --git a/src/finn/transformation/fpgadataflow/insert_fifo.py b/src/finn/transformation/fpgadataflow/insert_fifo.py
index c0ac1319d..f51e6212b 100644
--- a/src/finn/transformation/fpgadataflow/insert_fifo.py
+++ b/src/finn/transformation/fpgadataflow/insert_fifo.py
@@ -29,11 +29,15 @@ def _suitable_node(node):
 
 
 def _suitable_folded_shapes(ishape, oshape):
-    i_dummy = np.random.rand(*ishape)
-    o_dummy = np.random.rand(*oshape)
-    ishape_canonical = np.squeeze(i_dummy).shape
-    oshape_canonical = np.squeeze(o_dummy).shape
-    return ishape_canonical == oshape_canonical
+    matching_stream_width = ishape[-1] == oshape[-1]
+    matching_size = np.prod(ishape) == np.prod(oshape)
+    return matching_stream_width and matching_size
+
+    # i_dummy = np.random.rand(*ishape)
+    # o_dummy = np.random.rand(*oshape)
+    # ishape_canonical = np.squeeze(i_dummy).shape
+    # oshape_canonical = np.squeeze(o_dummy).shape
+    # return ishape_canonical == oshape_canonical
 
 
 class InsertFIFO(Transformation):
diff --git a/src/finn/transformation/move_reshape.py b/src/finn/transformation/move_reshape.py
index cb8deaeec..87405590e 100644
--- a/src/finn/transformation/move_reshape.py
+++ b/src/finn/transformation/move_reshape.py
@@ -1,5 +1,6 @@
 from finn.transformation.base import Transformation
 from finn.util.basic import get_by_name, is_finn_op
+from finn.custom_op.registry import getCustomOp
 
 
 def _is_fpgadataflow_node(node):
@@ -22,29 +23,67 @@ class RemoveCNVtoFCFlatten(Transformation):
     between two fpgadataflow nodes"""
 
     def apply(self, model):
-
         graph = model.graph
         graph_modified = False
         for n in graph.node:
-            if n.op_type == "Reshape":
-                shape = model.get_initializer(n.input[1])
-                if (shape == [1, -1]).all():
-                    producer = model.find_producer(n.input[0])
-                    if _is_fpgadataflow_node(producer) is True:
-                        consumer = model.find_consumer(n.output[0])
-                        if _is_fpgadataflow_node(consumer) is True:
-                            graph_modified = True
-                            consumer.input[0] = n.input[0]
-                            graph.node.remove(n)
-                    elif producer.op_type == "Transpose":
-                        transp_node = producer
+            if n.op_type == "Flatten":  # re-add reshape
+                # shape = model.get_initializer(n.input[1])
+                # if (shape == [1, -1]).all():
+                producer = model.find_producer(n.input[0])
+                if _is_fpgadataflow_node(producer) is True:
+                    consumer = model.find_consumer(n.output[0])
+                    if _is_fpgadataflow_node(consumer) is True:
+                        graph_modified = True
+                        consumer.input[0] = n.input[0]
+                        graph.node.remove(n)
+                elif producer.op_type == "Transpose":
+                    transp_node = producer
+
+                    # check if transpose converts NHWC to NCHW
+                    perms = list(get_by_name(transp_node.attribute, "perm").ints)
+                    if perms == [0, 3, 1, 2]:
+
                         producer = model.find_producer(transp_node.input[0])
+
                         if _is_fpgadataflow_node(producer) is True:
                             consumer = model.find_consumer(n.output[0])
                             if _is_fpgadataflow_node(consumer) is True:
-                                graph_modified = True
-                                consumer.input[0] = transp_node.input[0]
-                                graph.node.remove(n)
-                                graph.node.remove(transp_node)
+                                if consumer.op_type == "StreamingFCLayer_Batch":
+                                    fc_inst = getCustomOp(consumer)
+                                    mw = fc_inst.get_nodeattr("MW")
+                                    mh = fc_inst.get_nodeattr("MH")
+                                    (b, h, w, c) = model.get_tensor_shape(
+                                        transp_node.input[0]
+                                    )
+                                    # absorb transpose into weight matrix, allowing FC layer to operate on the NHWC input
+                                    W = model.get_initializer(consumer.input[1])
+                                    assert (
+                                        W is not None
+                                    ), "Initializer for matmul weights is not set."
+                                    print("fc weights before")
+                                    print(W.shape)
+                                    print(W)
+
+                                    W_new = W.reshape(c, h, w, mh)
+                                    W_new = W_new.transpose((1, 2, 0, 3))
+                                    W_new = W_new.reshape(mw, mh)
+
+                                    print("fc weights after")
+                                    print(W_new.shape)
+                                    print(W_new)
+
+                                    model.set_initializer(consumer.input[1], W_new)
+
+                                    # remove transpose & flatten nodes
+                                    graph_modified = True
+                                    consumer.input[0] = transp_node.input[0]
+                                    graph.node.remove(n)
+                                    graph.node.remove(transp_node)
+                                else:
+                                    warnings.warn(
+                                        "Could not absorb transpose into node behind flatten layer"
+                                    )
+                    else:
+                        warnings.warn("Unsupported transpose node before flatten layer")
 
         return (model, graph_modified)
diff --git a/src/finn/transformation/streamline/absorb.py b/src/finn/transformation/streamline/absorb.py
index fa2d7a714..979a69163 100644
--- a/src/finn/transformation/streamline/absorb.py
+++ b/src/finn/transformation/streamline/absorb.py
@@ -338,24 +338,35 @@ class AbsorbTransposeIntoMultiThreshold(Transformation):
                                 graph.node.remove(n)
                                 graph.node.remove(final_t_cand)
                                 graph_modified = True
-                        elif final_t_cand.op_type == "Reshape":
-                            oshape = model.get_tensor_shape(final_t_cand.output[0])
-                            if len(oshape) == 2:
-                                # transition to FC part, can still use NHWC
-                                mt = getCustomOp(mt_cand)
-                                mt.set_nodeattr("data_layout", "NHWC")
-                                # get rid of first tranpose node
-                                mt_cand.input[0] = n.input[0]
-                                # fix output shape for MultiThreshold
-                                mt_ishape = model.get_tensor_shape(mt_cand.input[0])
-                                (b, h, w, c) = mt_ishape
-                                assert (
-                                    h == 1 and w == 1
-                                ), """Untested spatial dim
-                                in conv->fc transition, proceed with caution!"""
-                                model.set_tensor_shape(mt_cand.output[0], mt_ishape)
-                                graph.node.remove(n)
-                                graph_modified = True
+                        elif final_t_cand.op_type == "Flatten":  # TODO: re-add reshape
+                            # oshape = model.get_tensor_shape(final_t_cand.output[0])
+                            # if len(oshape) == 2:
+                            # transition to FC part, can still use NHWC
+                            mt = getCustomOp(mt_cand)
+                            mt.set_nodeattr("data_layout", "NHWC")
+                            # get rid of first tranpose node
+                            mt_cand.input[0] = n.input[0]
+                            # fix output shape for MultiThreshold
+                            mt_ishape = model.get_tensor_shape(mt_cand.input[0])
+                            (b, h, w, c) = mt_ishape
+                            # assert (
+                            #    h == 1 and w == 1
+                            # ), """Untested spatial dim
+                            # in conv->fc transition, proceed with caution!"""
+                            model.set_tensor_shape(mt_cand.output[0], mt_ishape)
+
+                            graph.node.remove(n)
+                            transpose_output = model.make_new_valueinfo_name()
+                            new_transpose = oh.make_node(
+                                "Transpose",
+                                [mt_cand.output[0]],
+                                [transpose_output],
+                                perm=[0, 3, 1, 2],
+                            )
+                            graph.node.insert(node_ind + 1, new_transpose)
+                            final_t_cand.input[0] = transpose_output
+
+                            graph_modified = True
         if graph_modified:
             model = model.transform(InferDataTypes())
         return (model, graph_modified)
diff --git a/tests/fpgadataflow/test_convert_to_hls_conv_fc_transition.py b/tests/fpgadataflow/test_convert_to_hls_conv_fc_transition.py
new file mode 100755
index 000000000..f0b9758d9
--- /dev/null
+++ b/tests/fpgadataflow/test_convert_to_hls_conv_fc_transition.py
@@ -0,0 +1,337 @@
+# Copyright (c) 2020, Xilinx
+# All rights reserved.
+#
+# Redistribution and use in source and binary forms, with or without
+# modification, are permitted provided that the following conditions are met:
+#
+# * Redistributions of source code must retain the above copyright notice, this
+#   list of conditions and the following disclaimer.
+#
+# * Redistributions in binary form must reproduce the above copyright notice,
+#   this list of conditions and the following disclaimer in the documentation
+#   and/or other materials provided with the distribution.
+#
+# * Neither the name of FINN nor the names of its
+#   contributors may be used to endorse or promote products derived from
+#   this software without specific prior written permission.
+#
+# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS"
+# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE
+# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE
+# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE
+# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL
+# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR
+# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER
+# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY,
+# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE
+# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE.
+
+from onnx import TensorProto, helper
+import numpy as np
+import pytest
+
+from finn.core.datatype import DataType
+from finn.transformation.infer_shapes import InferShapes
+from finn.transformation.infer_datatypes import InferDataTypes
+from finn.transformation.general import GiveUniqueNodeNames
+from finn.transformation.lower_convs_to_matmul import LowerConvsToMatMul
+
+from finn.transformation.fpgadataflow.prepare_ip import PrepareIP
+from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim
+from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP
+import finn.core.onnx_exec as oxe
+from finn.core.modelwrapper import ModelWrapper
+from finn.util.basic import gen_finn_dt_tensor
+import finn.transformation.fpgadataflow.convert_to_hls_layers as to_hls
+
+from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim
+from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim
+from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode
+from finn.custom_op.general.im2col import compute_conv_output_dim
+from finn.custom_op.registry import getCustomOp
+from finn.analysis.fpgadataflow.exp_cycles_per_layer import exp_cycles_per_layer
+
+import finn.transformation.streamline.absorb as absorb
+from finn.transformation.fold_constants import FoldConstants
+from finn.transformation.general import (
+    ApplyConfig,
+    GiveReadableTensorNames,
+    RemoveUnusedTensors,
+    RemoveStaticGraphInputs,
+)
+from finn.transformation.streamline import Streamline
+from finn.transformation.infer_data_layouts import InferDataLayouts
+from finn.transformation.move_reshape import RemoveCNVtoFCFlatten
+from finn.transformation.streamline.reorder import (
+    MakeMaxPoolNHWC,
+    MoveScalarLinearPastInvariants,
+)
+
+import finn.core.data_layout as DataLayout
+
+
+def get_multithreshold_rand_params(channels, num_of_thres, seed=None):
+    if seed is not None:
+        np.random.seed(seed)
+    steps = np.random.rand(channels, 1) * 20
+    bias = np.random.rand(channels, 1) * -10
+    thres = [np.arange(num_of_thres) for chn in range(channels)]
+    thres = ((thres + bias) * steps).astype(np.float32)
+    thres = np.round(thres)
+    return thres
+
+
+# conv_config  kernel_size,stride, pad
+
+
+# @pytest.mark.parametrize(
+#    "conv_config", [(1, 2, 0), (1, 3, 0), (3, 2, 1), (3, 1, 0), (3, 1, 1), (5, 2, 1)]
+# )
+# @pytest.mark.parametrize("depthwise", [False, True])
+# @pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"])
+@pytest.mark.parametrize("conv_config", [(3, 1, 1)])
+@pytest.mark.parametrize("depthwise", [False])
+@pytest.mark.parametrize("exec_mode", ["cppsim"])
+@pytest.mark.slow
+@pytest.mark.vivado
+def test_convert_to_hls_conv_fc_transition(conv_config, depthwise, exec_mode):
+    kernel_size, stride, pad = conv_config
+    np.random.seed(0)
+    idt = DataType.UINT4
+    odt = DataType.UINT4
+
+    in_feature_dim = 2
+    in_chn = 4
+    fc_filters = 8
+
+    if depthwise is True:
+        group = out_chn = in_chn
+        conv_param_shape = [out_chn, 1, kernel_size, kernel_size]
+    else:
+        group = 1
+        out_chn = 4
+        conv_param_shape = [out_chn, in_chn, kernel_size, kernel_size]
+
+    total_pad = 2 * pad
+    out_feature_dim = compute_conv_output_dim(
+        in_feature_dim, kernel_size, stride, total_pad
+    )
+
+    input_shape = [1, in_chn, in_feature_dim, in_feature_dim]
+    conv_output_shape = [1, out_chn, out_feature_dim, out_feature_dim]
+    output_shape = [1, fc_filters]
+
+    fc_param_shape = [out_chn * out_feature_dim * out_feature_dim, fc_filters]
+
+    conv_weight_dt = DataType.INT4
+    fc_weight_dt = DataType.INT4
+
+    conv_config = {}
+    conv_config["dilations"] = [1, 1]
+    conv_config["group"] = group
+    conv_config["kernel_shape"] = [kernel_size, kernel_size]
+    conv_config["pads"] = [pad, pad, pad, pad]
+    conv_config["strides"] = [stride, stride]
+
+    global_in = helper.make_tensor_value_info(
+        "global_in", TensorProto.FLOAT, input_shape
+    )
+    global_out = helper.make_tensor_value_info(
+        "global_out", TensorProto.FLOAT, output_shape
+    )
+    value_info = [
+        helper.make_tensor_value_info(
+            "conv_param", TensorProto.FLOAT, conv_param_shape
+        ),
+        helper.make_tensor_value_info("thres1_param", TensorProto.FLOAT, (out_chn, 15)),
+        helper.make_tensor_value_info(
+            "matmul_param", TensorProto.FLOAT, fc_param_shape
+        ),
+        helper.make_tensor_value_info(
+            "thres2_param", TensorProto.FLOAT, (fc_filters, 15)
+        ),
+    ]
+
+    modelproto = helper.make_model(
+        helper.make_graph(
+            name="test",
+            inputs=[global_in],
+            outputs=[global_out],
+            value_info=value_info,
+            nodes=[
+                helper.make_node(
+                    "Conv", ["global_in", "conv_param"], ["conv_out"], **conv_config
+                ),
+                helper.make_node(
+                    "MultiThreshold",
+                    ["conv_out", "thres1_param"],
+                    ["thres1_out"],
+                    domain="finn.custom_op.general",
+                    out_dtype="UINT4",
+                    # out_bias=-7,
+                    # out_scale=1.0
+                ),
+                helper.make_node("Flatten", ["thres1_out"], ["flatten_out"], axis=1),
+                helper.make_node(
+                    "MatMul", ["flatten_out", "matmul_param"], ["matmul_out"]
+                ),
+                helper.make_node(
+                    "MultiThreshold",
+                    ["matmul_out", "thres2_param"],
+                    ["global_out"],
+                    domain="finn.custom_op.general",
+                    out_dtype="UINT4",
+                    # out_bias=-7,
+                    # out_scale=1.0
+                ),
+            ],
+        )
+    )
+
+    model = ModelWrapper(modelproto)
+    model.set_tensor_datatype("global_in", idt)
+    model.set_tensor_layout("global_in", DataLayout.NCHW)
+    model.set_tensor_datatype("global_out", odt)
+    model.set_tensor_datatype("conv_param", conv_weight_dt)
+    model.set_tensor_datatype("matmul_param", fc_weight_dt)
+    model.set_tensor_datatype("thres1_param", DataType.INT32)
+    model.set_tensor_datatype("thres2_param", DataType.INT32)
+    model.set_tensor_datatype(
+        "flatten_out", DataType.UINT4
+    )  # TODO: not inferred automatically (FLOAT32)
+    model.set_initializer(
+        "conv_param", gen_finn_dt_tensor(conv_weight_dt, conv_param_shape)
+    )
+    model.set_initializer(
+        "thres1_param", get_multithreshold_rand_params(out_chn, 15, seed=0)
+    )
+    model.set_initializer(
+        "thres2_param", get_multithreshold_rand_params(fc_filters, 15, seed=0)
+    )
+    model.set_initializer(
+        "matmul_param", gen_finn_dt_tensor(fc_weight_dt, fc_param_shape)
+    )
+
+    model = model.transform(InferShapes())
+    model = model.transform(InferDataTypes())
+    model = model.transform(InferDataLayouts())
+
+    model.save("testmodel_in.onnx")
+
+    x = gen_finn_dt_tensor(idt, input_shape)
+    inp_dict = {model.graph.input[0].name: x}
+    output = oxe.execute_onnx(model, inp_dict)
+    print(output)
+
+    # streamlining step
+    model = model.transform(MoveScalarLinearPastInvariants())
+    model = model.transform(Streamline())
+    model = model.transform(LowerConvsToMatMul())
+    model = model.transform(MakeMaxPoolNHWC())
+    model = model.transform(absorb.AbsorbTransposeIntoMultiThreshold())
+    model = model.transform(Streamline())
+
+    model = model.transform(InferDataLayouts())
+    model = model.transform(RemoveUnusedTensors())
+
+    model.save("testmodel_streamlined.onnx")
+
+    output = oxe.execute_onnx(model, inp_dict)
+    print(output)
+
+    # convert_to_hls step
+    model = model.transform(to_hls.InferQuantizedStreamingFCLayer())
+    model = model.transform(to_hls.InferThresholdingLayer())
+    model = model.transform(to_hls.InferConvInpGen())
+    model = model.transform(to_hls.InferStreamingMaxPool())
+    model = model.transform(RemoveCNVtoFCFlatten())
+    model = model.transform(absorb.AbsorbConsecutiveTransposes())
+
+    model = model.transform(GiveUniqueNodeNames())
+    model = model.transform(InferDataLayouts())
+
+    if exec_mode == "cppsim":
+        model = model.transform(PrepareCppSim())
+        model = model.transform(CompileCppSim())
+        model = model.transform(SetExecMode("cppsim"))
+    elif exec_mode == "rtlsim":
+        model = model.transform(SetExecMode("rtlsim"))
+        model = model.transform(GiveUniqueNodeNames())
+        model = model.transform(PrepareIP("xc7z020clg400-1", 5))
+        model = model.transform(HLSSynthIP())
+        model = model.transform(PrepareRTLSim())
+    else:
+        raise Exception("Unknown exec_mode")
+
+    model.save("testmodel_hls.onnx")
+
+    output = oxe.execute_onnx(model, inp_dict)
+    print(output)
+
+    model_orig = ModelWrapper("testmodel_in.onnx")
+    model_hls = ModelWrapper("testmodel_hls.onnx")
+
+    assert oxe.compare_execution(model_orig, model_hls, inp_dict)
+
+
+"""
+    new_model = model.transform(LowerConvsToMatMul())
+    new_model = new_model.transform(to_hls.InferConvInpGen())
+    if depthwise is True:
+        new_model = new_model.transform(to_hls.InferVVAU())
+    else:
+        new_model = new_model.transform(to_hls.InferQuantizedStreamingFCLayer())
+        fc_node = new_model.get_nodes_by_op_type("StreamingFCLayer_Batch")[0]
+        fc_inst = getCustomOp(fc_node)
+        mw = fc_inst.get_nodeattr("MW")
+        mh = fc_inst.get_nodeattr("MH")
+        pe_cands = list(filter(lambda x: mh % x == 0, range(2, mh + 1)))
+        simd_cands = list(filter(lambda x: mw % x == 0, range(2, mw + 1)))
+        fc_inst.set_nodeattr("PE", pe_cands[0])
+        fc_inst.set_nodeattr("SIMD", simd_cands[0])
+
+    new_model = new_model.transform(GiveUniqueNodeNames())
+    new_model = new_model.transform(InferShapes())
+    new_model = new_model.transform(InferDataTypes())
+
+    if exec_mode == "cppsim":
+        new_model = new_model.transform(PrepareCppSim())
+        new_model = new_model.transform(CompileCppSim())
+        new_model = new_model.transform(SetExecMode("cppsim"))
+    elif exec_mode == "rtlsim":
+        new_model = new_model.transform(SetExecMode("rtlsim"))
+        new_model = new_model.transform(GiveUniqueNodeNames())
+        new_model = new_model.transform(PrepareIP("xc7z020clg400-1", 5))
+        new_model = new_model.transform(HLSSynthIP())
+        new_model = new_model.transform(PrepareRTLSim())
+    else:
+        raise Exception("Unknown exec_mode")
+
+    x = gen_finn_dt_tensor(idt, input_shape)
+    inp_dict = {model.graph.input[0].name: x}
+    assert oxe.compare_execution(model, new_model, inp_dict)
+    if kernel_size == 1 and stride > 1 and pad == 0:
+        assert new_model.graph.node[1].op_type == "DownSampler"
+        if exec_mode == "rtlsim":
+            node = new_model.get_nodes_by_op_type("DownSampler")[0]
+            inst = getCustomOp(node)
+            cycles_rtlsim = inst.get_nodeattr("cycles_rtlsim")
+            exp_cycles_dict = new_model.analysis(exp_cycles_per_layer)
+            exp_cycles = exp_cycles_dict[node.name]
+            assert np.isclose(exp_cycles, cycles_rtlsim, atol=11)
+            assert exp_cycles != 0
+
+    if pad == 1:
+        padding_node = new_model.get_nodes_by_op_type("FMPadding_Batch")[0]
+        padding_inst = getCustomOp(padding_node)
+        assert padding_inst.get_nodeattr("SIMD") == in_chn
+
+    if depthwise is True and exec_mode == "rtlsim":
+        node = new_model.get_nodes_by_op_type("Vector_Vector_Activate_Batch")[0]
+        inst = getCustomOp(node)
+        cycles_rtlsim = inst.get_nodeattr("cycles_rtlsim")
+        exp_cycles_dict = new_model.analysis(exp_cycles_per_layer)
+        exp_cycles = exp_cycles_dict[node.name]
+        assert np.isclose(exp_cycles, cycles_rtlsim, atol=11)
+        assert exp_cycles != 0
+ """
-- 
GitLab