diff --git a/src/finn/custom_op/fpgadataflow/eltwise.py b/src/finn/custom_op/fpgadataflow/eltwise.py new file mode 100644 index 0000000000000000000000000000000000000000..ce99154231a3e0c5fd8c07bbaf653cc99a112614 --- /dev/null +++ b/src/finn/custom_op/fpgadataflow/eltwise.py @@ -0,0 +1,416 @@ +# Copyright (c) 2022, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import numpy as np +import os +import warnings +from qonnx.core.datatype import DataType + +from finn.custom_op.fpgadataflow.hlscustomop import HLSCustomOp +from finn.util.data_packing import npy_to_rtlsim_input, rtlsim_output_to_npy + + +class StreamingEltwise(HLSCustomOp): + """Class that corresponds to finn-hlslib StreamingEltwise function.""" + + def __init__(self, onnx_node): + super().__init__(onnx_node) + + def get_nodeattr_types(self): + my_attrs = { + "NumChannels": ("i", True, ""), + "PE": ("i", True, ""), + # FINN DataTypes for inputs; output datatype inferred from input + "inputDataType0": ("s", True, ""), + "inputDataType1": ("s", True, ""), + # type of EltwiseFunction for the operation + "eltwiseOp": ("s", True, "", ["Add", "Sub", "AbsDiff"]), + # number of input vectors, examples: + # [1] is a single vector (like a FC layer with batch=1) + # [4] is four vectors (like a FC layer with batch=4) + # [1, 4, 4] is four * four vectors (like a conv layer with batch=1) + "numInputVectors": ("ints", False, [1]), + } + my_attrs.update(super().get_nodeattr_types()) + return my_attrs + + def get_normal_input_shape(self, ind=0): + ich = self.get_nodeattr("NumChannels") + vecs = list(self.get_nodeattr("numInputVectors")) + ishape = tuple(vecs + [ich]) + return ishape + + def get_folded_input_shape(self, ind=0): + ich = self.get_nodeattr("NumChannels") + pe = self.get_nodeattr("PE") + assert ich % pe == 0, "PE must divide NumChannels" + vecs = list(self.get_nodeattr("numInputVectors")) + ishape = tuple(vecs + [ich // pe, pe]) + return ishape + + def get_normal_output_shape(self): + return self.get_normal_input_shape() + + def get_folded_output_shape(self): + return self.get_folded_input_shape() + + def make_shape_compatible_op(self, model): + exp_ishape = self.get_normal_input_shape() + oshape = self.get_normal_output_shape() + ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0])) + assert ishape == exp_ishape, "Unexpected input1 shape." + ishape = tuple(model.get_tensor_shape(self.onnx_node.input[1])) + assert ishape == exp_ishape, "Unexpected input2 shape." + return super().make_const_shape_op(oshape) + + def infer_node_datatype(self, model): + node = self.onnx_node + idt0 = model.get_tensor_datatype(node.input[0]) + if idt0 != self.get_input_datatype(0): + warn_str = "inputDataType0 changing for %s: %s -> %s " % ( + node.name, + str(self.get_input_datatype(0)), + str(idt0), + ) + warnings.warn(warn_str) + self.set_nodeattr("inputDataType0", idt0.name) + idt1 = model.get_tensor_datatype(node.input[1]) + if idt1 != self.get_input_datatype(1): + warn_str = "inputDataType1 changing for %s: %s -> %s " % ( + node.name, + str(self.get_input_datatype(1)), + str(idt1), + ) + warnings.warn(warn_str) + self.set_nodeattr("inputDataType1", idt1.name) + # enforce output data type (calculated based on idt) + odt = self.get_output_datatype() + model.set_tensor_datatype(self.onnx_node.output[0], odt) + + def verify_node(self): + info_messages = [] + # verify that "backend" is set to "fpgadataflow" + backend_value = self.get_nodeattr("backend") + if backend_value == "fpgadataflow": + info_messages.append("Attribute backend is set correctly") + else: + info_messages.append('Attribute backend should be set to "fpgadataflow"') + + # verify that all necessary attributes exist + try: + self.get_nodeattr("code_gen_dir_cppsim") + self.get_nodeattr("executable_path") + self.get_nodeattr("NumChannels") + self.get_nodeattr("PE") + self.get_nodeattr("inputDataType0") + self.get_nodeattr("inputDataType1") + self.get_nodeattr("eltwiseOp") + info_messages.append("All necessary attributes exist") + except Exception: + info_messages.append( + """The required LabelSelect_Batch attributes do not exist.""" + ) + + return info_messages + + def get_input_datatype(self, id=0): + """Returns FINN DataType of input.""" + return DataType[self.get_nodeattr("inputDataType" + str(id))] + + def get_output_datatype(self): + """Returns FINN DataType of output.""" + op = self.get_nodeattr("eltwiseOp") + idt0 = self.get_input_datatype(0) + idt1 = self.get_input_datatype(1) + assert idt0.signed() == idt1.signed(), ( + "%s: Inputs must have same signedness" % self.onnx_node.name + ) + idt0_min, idt0_max = idt0.min(), idt0.max() + idt1_min, idt1_max = idt1.min(), idt1.max() + cands = [ + idt0_min - idt1_min, + idt0_min - idt1_max, + idt0_max - idt1_min, + idt0_max - idt1_max, + ] + largest_magnitude = max(map(abs, cands)) + if op == "Add": + if idt0.signed(): + return DataType.get_smallest_possible(idt0.min() + idt1.min()) + else: + return DataType.get_smallest_possible(idt0.max() + idt1.max()) + elif op == "Sub": + return DataType.get_smallest_possible(-largest_magnitude) + elif op == "AbsDiff": + return DataType.get_smallest_possible(largest_magnitude) + else: + raise Exception("%s: Unknown eltWiseOp = %s" % (self.onnx_node.name, op)) + + def get_instream_width(self, ind=0): + """Returns input stream width.""" + ibits = self.get_input_datatype(ind).bitwidth() + pe = self.get_nodeattr("PE") + in_width = pe * ibits + return in_width + + def get_outstream_width(self): + """Returns output stream width.""" + obits = self.get_output_datatype().bitwidth() + pe = self.get_nodeattr("PE") + out_width = pe * obits + return out_width + + def get_number_output_values(self): + return np.prod(self.get_folded_output_shape()[:-1]) + + def get_exp_cycles(self): + # Channels/PE * batch size * fmdim * fmdim + return np.prod(self.get_folded_output_shape()[:-1]) + + def execute_node(self, context, graph): + mode = self.get_nodeattr("exec_mode") + node = self.onnx_node + exp_ishape = self.get_normal_input_shape() + exp_oshape = self.get_normal_output_shape() + folded_ishape = self.get_folded_input_shape() + + if mode == "cppsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + elif mode == "rtlsim": + code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen") + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + inp = context[node.input[0]] + assert str(inp.dtype) == "float32", "Input datatype is not float32" + assert ( + inp.shape == exp_ishape + ), """Input0 shape doesn't match expected shape .""" + export_idt = self.get_input_datatype() + # reshape input into folded form + inp = inp.reshape(folded_ishape) + # make copy before saving array + reshaped_input = inp.copy() + np.save(os.path.join(code_gen_dir, "input_0.npy"), reshaped_input) + + # exact same thing for input1 + inp = context[node.input[1]] + assert str(inp.dtype) == "float32", "Input datatype is not float32" + assert ( + inp.shape == exp_ishape + ), """Input1 shape doesn't match expected shape .""" + export_idt = self.get_input_datatype() + # reshape input into folded form + inp = inp.reshape(folded_ishape) + # make copy before saving array + reshaped_input = inp.copy() + np.save(os.path.join(code_gen_dir, "input_1.npy"), reshaped_input) + + if mode == "cppsim": + # execute the precompiled model + super().exec_precompiled_singlenode_model() + # load output npy file + super().npy_to_dynamic_output(context) + assert ( + context[node.output[0]].shape == exp_oshape + ), "cppsim did not produce expected output shape" + elif mode == "rtlsim": + sim = self.get_rtlsim() + nbits = self.get_instream_width() + rtlsim_inp0 = npy_to_rtlsim_input( + "{}/input_0.npy".format(code_gen_dir), export_idt, nbits + ) + rtlsim_inp1 = npy_to_rtlsim_input( + "{}/input_1.npy".format(code_gen_dir), export_idt, nbits + ) + super().reset_rtlsim(sim) + super().toggle_clk(sim) + rtlsim_output = self.rtlsim(sim, rtlsim_inp0, rtlsim_inp1) + odt = self.get_output_datatype() + target_bits = odt.bitwidth() + packed_bits = self.get_outstream_width() + out_npy_path = "{}/output.npy".format(code_gen_dir) + out_shape = self.get_folded_output_shape() + rtlsim_output_to_npy( + rtlsim_output, out_npy_path, odt, out_shape, packed_bits, target_bits + ) + # load and reshape output + output = np.load(out_npy_path) + output = np.asarray([output], dtype=np.float32).reshape(*exp_oshape) + context[node.output[0]] = output + else: + raise Exception( + """Invalid value for attribute exec_mode! Is currently set to: {} + has to be set to one of the following value ("cppsim", "rtlsim")""".format( + mode + ) + ) + + assert ( + context[node.output[0]].shape == exp_oshape + ), """Output shape doesn't match expected shape.""" + + def global_includes(self): + self.code_gen_dict["$GLOBALS$"] = [ + '#include "eltwise.hpp"', + '#include "interpret.hpp', + ] + + def defines(self, var): + self.code_gen_dict["$DEFINES$"] = [] + + def read_npy_data(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + idt0 = self.get_input_datatype(0) + idt1 = self.get_input_datatype(1) + elem_bits_0 = idt0.bitwidth() + elem_bits_1 = idt1.bitwidth() + packed_bits_0 = self.get_instream_width(0) + packed_hls_type_0 = "ap_uint<%d>" % packed_bits_0 + packed_bits_1 = self.get_instream_width(1) + packed_hls_type_1 = "ap_uint<%d>" % packed_bits_1 + elem_hls_type_0 = idt0.get_hls_datatype_str() + elem_hls_type_1 = idt1.get_hls_datatype_str() + npy_type = "float" + self.code_gen_dict["$READNPYDATA$"] = [] + npy_in = "%s/input_0.npy" % code_gen_dir + self.code_gen_dict["$READNPYDATA$"].append( + 'npy2apintstream<%s, %s, %d, %s>("%s", in0);' + % (packed_hls_type_0, elem_hls_type_0, elem_bits_0, npy_type, npy_in) + ) + npy_in = "%s/input_1.npy" % code_gen_dir + self.code_gen_dict["$READNPYDATA$"].append( + 'npy2apintstream<%s, %s, %d, %s>("%s", in1);' + % (packed_hls_type_1, elem_hls_type_1, elem_bits_1, npy_type, npy_in) + ) + + def strm_decl(self): + self.code_gen_dict["$STREAMDECLARATIONS$"] = [] + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> in0 ("in0");'.format(self.get_instream_width(0)) + ) + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> in1 ("in1");'.format(self.get_instream_width(1)) + ) + self.code_gen_dict["$STREAMDECLARATIONS$"].append( + 'hls::stream<ap_uint<{}>> out ("out");'.format(self.get_outstream_width()) + ) + + def docompute(self): + op = self.get_nodeattr("eltwiseOp") + idt0 = self.get_input_datatype(0) + idt1 = self.get_input_datatype(1) + odt = self.get_output_datatype() + elem_hls_type_0 = idt0.get_hls_datatype_str() + elem_hls_type_1 = idt1.get_hls_datatype_str() + out_hls_type = odt.get_hls_datatype_str() + slice_in0 = "Slice<%s>" % elem_hls_type_0 + slice_in1 = "Slice<%s>" % elem_hls_type_1 + slice_out = "Slice<%s>" % out_hls_type + eltwise_op_str = "%sEltwiseFunction<%s, %s, %s>()" % ( + op, + elem_hls_type_0, + elem_hls_type_1, + out_hls_type, + ) + self.code_gen_dict["$DOCOMPUTE$"] = [ + """{}<{}, {}, {}, {}, {}, {}, {}>(in0, in1, out);""".format( + "StreamingEltwise", + self.get_nodeattr("NumChannels"), + self.get_nodeattr("PE"), + self.get_number_output_values(), + slice_in0, + slice_in1, + slice_out, + eltwise_op_str, + ) + ] + + def dataoutstrm(self): + code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim") + dtype = self.get_output_datatype() + elem_bits = dtype.bitwidth() + packed_bits = self.get_outstream_width() + packed_hls_type = "ap_uint<%d>" % packed_bits + elem_hls_type = dtype.get_hls_datatype_str() + npy_type = "float" + npy_out = "%s/output.npy" % code_gen_dir + oshape = self.get_folded_output_shape() + oshape_cpp_str = str(oshape).replace("(", "{").replace(")", "}") + + self.code_gen_dict["$DATAOUTSTREAM$"] = [ + 'apintstream2npy<%s, %s, %d, %s>(out, %s, "%s");' + % ( + packed_hls_type, + elem_hls_type, + elem_bits, + npy_type, + oshape_cpp_str, + npy_out, + ) + ] + + def save_as_npy(self): + self.code_gen_dict["$SAVEASCNPY$"] = [] + + def blackboxfunction(self): + self.code_gen_dict["$BLACKBOXFUNCTION$"] = [ + """void {}(hls::stream<ap_uint<{}>> &in0, hls::stream<ap_uint<{}>> &in1, + hls::stream<ap_uint<{}>> &out)""".format( + self.onnx_node.name, + self.get_nodeattr("PE") * self.get_input_datatype(0).bitwidth(), + self.get_nodeattr("PE") * self.get_input_datatype(1).bitwidth(), + self.get_nodeattr("PE") * self.get_output_datatype().bitwidth(), + ) + ] + + def pragmas(self): + self.code_gen_dict["$PRAGMAS$"] = [ + "#pragma HLS INTERFACE axis port=in0 name=in0_" + self.hls_sname() + ] + self.code_gen_dict["$PRAGMAS$"].append( + "#pragma HLS INTERFACE axis port=in1 name=in1_" + self.hls_sname() + ) + self.code_gen_dict["$PRAGMAS$"].append( + "#pragma HLS INTERFACE axis port=out name=out_" + self.hls_sname() + ) + self.code_gen_dict["$PRAGMAS$"].append( + "#pragma HLS INTERFACE ap_ctrl_none port=return" + ) + + def get_verilog_top_module_intf_names(self): + intf_names = super().get_verilog_top_module_intf_names() + sname = self.hls_sname() + swidth = self.get_instream_width_padded() + intf_names["s_axis"] = [(x + "_" + sname, swidth) for x in ["in0", "in1"]] + return intf_names