From 1ee4b9446c4c782ff200db75d14c1260b8ab3fee Mon Sep 17 00:00:00 2001 From: Tobi-Alonso <tobi.alonso@gmail.com> Date: Tue, 7 Jul 2020 17:14:12 +0100 Subject: [PATCH] [HLSCustomOp] Fix inferShapes for InferDuplicateStreamsLayer --- .../fpgadataflow/duplicatestreams_batch.py | 17 ++++++----------- 1 file changed, 6 insertions(+), 11 deletions(-) diff --git a/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py b/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py index 54051af5e..8143b9c55 100644 --- a/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py +++ b/src/finn/custom_op/fpgadataflow/duplicatestreams_batch.py @@ -32,7 +32,7 @@ import numpy as np from finn.core.datatype import DataType from finn.custom_op.fpgadataflow import HLSCustomOp -from onnx import TensorProto, helper +from onnx import helper from finn.util.data_packing import npy_to_rtlsim_input, rtlsim_output_to_npy @@ -80,24 +80,19 @@ class DuplicateStreams_Batch(HLSCustomOp): def make_shape_compatible_op(self, model): exp_ishape = self.get_normal_input_shape() - oshape = self.get_normal_output_shape() ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0])) assert ishape == exp_ishape, "Unexpected input shape." - # implement tensor with correct shape - values = np.random.randn(*oshape).astype(np.float32) - split_input = np.concatenate((values, values), axis=0) return helper.make_node( - "Split", - inputs=[split_input], - outputs=[self.onnx_node.output[0], self.onnx_node.output[0]], - value=helper.make_tensor( - name="const_tensor", data_type=TensorProto.FLOAT, axis=0 - ), + "Dropout", + inputs=[self.onnx_node.input[0]], + outputs=[self.onnx_node.output[0], self.onnx_node.output[1]], + axis=0, ) def infer_node_datatype(self, model): odt = self.get_output_datatype() model.set_tensor_datatype(self.onnx_node.output[0], odt) + model.set_tensor_datatype(self.onnx_node.output[1], odt) def verify_node(self): info_messages = [] -- GitLab