diff --git a/src/finn/custom_op/fpgadataflow/sameresize_batch.py b/src/finn/custom_op/fpgadataflow/sameresize_batch.py
new file mode 100644
index 0000000000000000000000000000000000000000..c459cac1e9c17336200a1fc85aad2af5e14e2c61
--- /dev/null
+++ b/src/finn/custom_op/fpgadataflow/sameresize_batch.py
@@ -0,0 +1,298 @@
+import os
+import numpy as np
+from onnx import TensorProto, helper
+from finn.core.datatype import DataType
+from finn.custom_op.fpgadataflow import HLSCustomOp
+from finn.util.data_packing import npy_to_rtlsim_input, rtlsim_output_to_npy
+
+
+class SameResize_Batch(HLSCustomOp):
+    """Class that corresponds to finn-hlslib SameResize function.
+    Implements 'same' padding on a given input image."""
+
+    def __init__(self, onnx_node):
+        super().__init__(onnx_node)
+
+    def get_nodeattr_types(self):
+        my_attrs = {
+            "ImgDim": ("i", True, 0),
+            "KernelDim": ("i", True, 0),
+            "Stride": ("i", True, 0),
+            "NumChannels": ("i", True, 0),
+            # FINN input datatype
+            "inputDataType": ("s", True, ""),
+            # distribution of added values to achieve "same" padding
+            "PaddingStyle": ("i", True, 2),
+        }
+        my_attrs.update(super().get_nodeattr_types())
+        return my_attrs
+
+    def get_normal_input_shape(self):
+        idim = self.get_nodeattr("ImgDim")
+        num_ch = self.get_nodeattr("NumChannels")
+
+        ishape = (1, idim, idim, num_ch)
+        return ishape
+
+    def get_normal_output_shape(self):
+        idim = self.get_nodeattr("ImgDim")
+        num_ch = self.get_nodeattr("NumChannels")
+        kdim = self.get_nodeattr("KernelDim")
+        stride = self.get_nodeattr("Stride")
+        assert idim % stride == 0, "Stride must divide input dimension."
+        # number of "same" windows over the input data
+        same_windows = idim // stride
+        odim = kdim + stride * (same_windows - 1)
+
+        oshape = (1, odim, odim, num_ch)
+        return oshape
+
+    def get_folded_input_shape(self):
+        # even though there is no folding in the current hlslib op,
+        # insert a time multiplexing axis to remain compatible with the
+        # shapes produced by the rest of the dataflow pipeline
+        ret = list(self.get_normal_input_shape())
+        ret.insert(-1, 1)
+        return tuple(ret)
+
+    def get_folded_output_shape(self):
+        # even though there is no folding in the current hlslib op,
+        # insert a time multiplexing axis to remain compatible with the
+        # shapes produced by the rest of the dataflow pipeline
+        ret = list(self.get_normal_output_shape())
+        ret.insert(-1, 1)
+        return tuple(ret)
+
+    def make_shape_compatible_op(self, model):
+        exp_ishape = self.get_normal_input_shape()
+        oshape = self.get_normal_output_shape()
+        ishape = tuple(model.get_tensor_shape(self.onnx_node.input[0]))
+        assert ishape == exp_ishape, "Unexpect input shape for SameResize."
+        # implement tensor with correct shape
+        values = np.random.randn(*oshape).astype(np.float32)
+        return helper.make_node(
+            "Constant",
+            inputs=[],
+            outputs=[self.onnx_node.output[0]],
+            value=helper.make_tensor(
+                name="const_tensor",
+                data_type=TensorProto.FLOAT,
+                dims=values.shape,
+                vals=values.flatten().astype(float),
+            ),
+        )
+
+    def infer_node_datatype(self, model):
+        node = self.onnx_node
+        # data type stays the same
+        dtype = model.get_tensor_datatype(node.input[0])
+        exp_idtype = self.get_input_datatype()
+        assert dtype == exp_idtype, "Unexpected datatype for SameResize_Batch"
+        model.set_tensor_datatype(node.output[0], dtype)
+
+    def verify_node(self):
+        pass
+
+    def get_input_datatype(self):
+        """Returns FINN DataType of input."""
+        ret = DataType[self.get_nodeattr("inputDataType")]
+        # the hlslib op always pads with zeroes, so ensure that the DataType
+        # is able to represent zeroes
+        assert ret.allowed(0), "SameResize_Batch DataType must support zero"
+        return ret
+
+    def get_output_datatype(self):
+        """Returns FINN DataType of output. (Same as input datatype)"""
+        return self.get_input_datatype()
+
+    def get_instream_width(self):
+        ibits = self.get_input_datatype().bitwidth()
+        num_ch = self.get_nodeattr("NumChannels")
+
+        return ibits * num_ch
+
+    def get_outstream_width(self):
+        obits = self.get_output_datatype().bitwidth()
+        num_ch = self.get_nodeattr("NumChannels")
+
+        return obits * num_ch
+
+    def get_number_output_values(self):
+        folded_oshape = self.get_folded_output_shape()
+        return np.prod(folded_oshape[:-1])
+
+    def global_includes(self):
+        self.code_gen_dict["$GLOBALS$"] = ['#include "streamtools.h"']
+
+    def defines(self, var):
+        numReps = 1
+        assert self.get_nodeattr("PaddingStyle") == 2, "Only PaddingStyle=2 supported"
+        self.code_gen_dict["$DEFINES$"] = [
+            """#define ImgDim1 {}\n #define KernelDim1 {}\n
+            #define Stride1 {}\n #define NumChannels1 {}\n
+            #define PaddingStyle1 {}\n #define numReps {}""".format(
+                self.get_nodeattr("ImgDim"),
+                self.get_nodeattr("KernelDim"),
+                self.get_nodeattr("Stride"),
+                self.get_nodeattr("NumChannels"),
+                self.get_nodeattr("PaddingStyle"),
+                numReps,
+            )
+        ]
+
+    def read_npy_data(self):
+        code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
+        dtype = self.get_input_datatype()
+        if dtype == DataType.BIPOLAR:
+            # use binary for bipolar storage
+            dtype = DataType.BINARY
+        elem_bits = dtype.bitwidth()
+        packed_bits = self.get_instream_width()
+        packed_hls_type = "ap_uint<%d>" % packed_bits
+        elem_hls_type = dtype.get_hls_datatype_str()
+        npy_type = "float"
+        npy_in = "%s/input_0.npy" % code_gen_dir
+        self.code_gen_dict["$READNPYDATA$"] = []
+        self.code_gen_dict["$READNPYDATA$"].append(
+            'npy2apintstream<%s, %s, %d, %s>("%s", in0);'
+            % (packed_hls_type, elem_hls_type, elem_bits, npy_type, npy_in)
+        )
+
+    def strm_decl(self):
+        self.code_gen_dict["$STREAMDECLARATIONS$"] = []
+        self.code_gen_dict["$STREAMDECLARATIONS$"].append(
+            'hls::stream<ap_uint<{}>> in0 ("in0");'.format(self.get_instream_width())
+        )
+        self.code_gen_dict["$STREAMDECLARATIONS$"].append(
+            'hls::stream<ap_uint<{}>> out ("out");'.format(self.get_outstream_width())
+        )
+
+    def docompute(self):
+        in_t = self.get_input_datatype().get_hls_datatype_str()
+        node = self.onnx_node
+        self.code_gen_dict["$DOCOMPUTE$"] = [
+            """{}<ImgDim1, KernelDim1, Stride1, NumChannels1,
+                {}, PaddingStyle1> (in0, out, numReps);""".format(
+                node.op_type, in_t
+            )
+        ]
+
+    def dataoutstrm(self):
+        code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
+        dtype = self.get_output_datatype()
+        if dtype == DataType.BIPOLAR:
+            # use binary for bipolar storage
+            dtype = DataType.BINARY
+        elem_bits = dtype.bitwidth()
+        packed_bits = self.get_outstream_width()
+        packed_hls_type = "ap_uint<%d>" % packed_bits
+        elem_hls_type = dtype.get_hls_datatype_str()
+        npy_type = "float"
+        npy_out = "%s/output.npy" % code_gen_dir
+        oshape = self.get_folded_output_shape()
+        oshape_cpp_str = str(oshape).replace("(", "{").replace(")", "}")
+
+        self.code_gen_dict["$DATAOUTSTREAM$"] = [
+            'apintstream2npy<%s, %s, %d, %s>(out, %s, "%s");'
+            % (
+                packed_hls_type,
+                elem_hls_type,
+                elem_bits,
+                npy_type,
+                oshape_cpp_str,
+                npy_out,
+            )
+        ]
+
+    def save_as_npy(self):
+        self.code_gen_dict["$SAVEASCNPY$"] = []
+
+    def blackboxfunction(self):
+        packed_bits = self.get_instream_width()
+        packed_hls_type = "ap_uint<%d>" % packed_bits
+        self.code_gen_dict["$BLACKBOXFUNCTION$"] = [
+            "void %s(hls::stream<%s > &in0, hls::stream<%s > &out)"
+            % (self.onnx_node.name, packed_hls_type, packed_hls_type)
+        ]
+
+    def pragmas(self):
+        self.code_gen_dict["$PRAGMAS$"] = ["#pragma HLS INTERFACE axis port=in0"]
+        self.code_gen_dict["$PRAGMAS$"].append("#pragma HLS INTERFACE axis port=out")
+        self.code_gen_dict["$PRAGMAS$"].append(
+            "#pragma HLS INTERFACE ap_ctrl_none port=return"
+        )
+
+    def execute_node(self, context, graph):
+        mode = self.get_nodeattr("exec_mode")
+        node = self.onnx_node
+        exp_ishape = self.get_normal_input_shape()
+        exp_oshape = self.get_normal_output_shape()
+        folded_oshape = self.get_folded_output_shape()
+
+        if mode == "cppsim":
+            code_gen_dir = self.get_nodeattr("code_gen_dir_cppsim")
+        elif mode == "rtlsim":
+            code_gen_dir = self.get_nodeattr("code_gen_dir_ipgen")
+        else:
+            raise Exception(
+                """Invalid value for attribute exec_mode! Is currently set to: {}
+            has to be set to one of the following value ("cppsim", "rtlsim")""".format(
+                    mode
+                )
+            )
+
+        inp = context[node.input[0]]
+        assert str(inp.dtype) == "float32", "Input datatype is not float32"
+        assert (
+            inp.shape == exp_ishape
+        ), """Input shape doesn't
+        match expected shape (1, ImgDim, ImgDim, NumChannels)."""
+        export_idt = self.get_input_datatype()
+
+        # no reshaping for input since assuming no folding on input
+        # make copy before saving array
+        inp = inp.copy()
+        np.save(os.path.join(code_gen_dir, "input_0.npy"), inp)
+
+        if mode == "cppsim":
+            # execute the precompiled model
+            super().exec_precompiled_singlenode_model()
+            # load output npy file
+            super().npy_to_dynamic_output(context)
+            assert (
+                context[node.output[0]].shape == folded_oshape
+            ), "cppsim \
+            did not produce expected ofolded utput shape"
+            context[node.output[0]] = context[node.output[0]].reshape(*exp_oshape)
+        elif mode == "rtlsim":
+            sim = self.get_rtlsim()
+            nbits = self.get_instream_width()
+            rtlsim_inp = npy_to_rtlsim_input(
+                "{}/input_0.npy".format(code_gen_dir), export_idt, nbits
+            )
+            super().reset_rtlsim(sim)
+            super().toggle_clk(sim)
+            rtlsim_output = self.rtlsim(sim, rtlsim_inp)
+            odt = export_idt
+            target_bits = odt.bitwidth()
+            packed_bits = self.get_outstream_width()
+            out_npy_path = "{}/output.npy".format(code_gen_dir)
+            out_shape = self.get_folded_output_shape()
+            rtlsim_output_to_npy(
+                rtlsim_output, out_npy_path, odt, out_shape, packed_bits, target_bits
+            )
+            # load and reshape output
+            output = np.load(out_npy_path)
+            output = np.asarray([output], dtype=np.float32).reshape(*exp_oshape)
+            context[node.output[0]] = output
+        else:
+            raise Exception(
+                """Invalid value for attribute exec_mode! Is currently set to: {}
+            has to be set to one of the following value ("cppsim", "rtlsim")""".format(
+                    mode
+                )
+            )
+        assert (
+            context[node.output[0]].shape == exp_oshape
+        ), """Output shape doesn't match expected shape
+            (1, OutputDim, OutputDim, NumChannels)."""
diff --git a/src/finn/custom_op/registry.py b/src/finn/custom_op/registry.py
index 0d62862c222b44d2e507a90a80bfcd4fa405d3fe..238829e03353d79fab7c51e7d1b9dca6e2a96a11 100644
--- a/src/finn/custom_op/registry.py
+++ b/src/finn/custom_op/registry.py
@@ -44,6 +44,7 @@ from finn.custom_op.fpgadataflow.streamingdatawidthconverter_batch import (
     StreamingDataWidthConverter_Batch,
 )
 from finn.custom_op.fpgadataflow.globalaccpool_batch import GlobalAccPool_Batch
+from finn.custom_op.fpgadataflow.sameresize_batch import SameResize_Batch
 from finn.custom_op.fpgadataflow.thresholding_batch import Thresholding_Batch
 from finn.custom_op.fpgadataflow.addstreams_batch import AddStreams_Batch
 from finn.custom_op.fpgadataflow.labelselect_batch import LabelSelect_Batch
@@ -64,6 +65,7 @@ custom_op["MaxPoolNHWC"] = MaxPoolNHWC
 custom_op["StreamingDataWidthConverter_Batch"] = StreamingDataWidthConverter_Batch
 custom_op["StreamingFIFO"] = StreamingFIFO
 custom_op["GlobalAccPool_Batch"] = GlobalAccPool_Batch
+custom_op["SameResize_Batch"] = SameResize_Batch
 custom_op["Thresholding_Batch"] = Thresholding_Batch
 custom_op["AddStreams_Batch"] = AddStreams_Batch
 custom_op["LabelSelect_Batch"] = LabelSelect_Batch
diff --git a/tests/fpgadataflow/test_fpgadataflow_sameresize.py b/tests/fpgadataflow/test_fpgadataflow_sameresize.py
new file mode 100644
index 0000000000000000000000000000000000000000..ea6130c3891443595b038460233ebb85799ac461
--- /dev/null
+++ b/tests/fpgadataflow/test_fpgadataflow_sameresize.py
@@ -0,0 +1,125 @@
+import pytest
+import os
+import numpy as np
+
+from onnx import TensorProto, helper
+from finn.core.datatype import DataType
+from finn.core.modelwrapper import ModelWrapper
+from finn.util.basic import gen_finn_dt_tensor
+import finn.core.onnx_exec as oxe
+from finn.transformation.infer_shapes import InferShapes
+from finn.transformation.fpgadataflow.set_exec_mode import SetExecMode
+from finn.transformation.general import GiveUniqueNodeNames
+from finn.transformation.fpgadataflow.prepare_cppsim import PrepareCppSim
+from finn.transformation.fpgadataflow.compile_cppsim import CompileCppSim
+from finn.transformation.fpgadataflow.prepare_ip import PrepareIP
+from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP
+from finn.transformation.fpgadataflow.prepare_rtlsim import PrepareRTLSim
+
+from finn.util.basic import pynq_part_map
+
+test_pynq_board = os.getenv("PYNQ_BOARD", default="Pynq-Z1")
+test_fpga_part = pynq_part_map[test_pynq_board]
+target_clk_ns = 10
+
+
+def make_single_sameresize_modelwrapper(
+    idim, odim, kdim, stride, num_ch, idt, pad_style
+):
+    inp = helper.make_tensor_value_info(
+        "inp", TensorProto.FLOAT, [1, idim, idim, num_ch]
+    )
+    outp = helper.make_tensor_value_info(
+        "outp", TensorProto.FLOAT, [1, odim, odim, num_ch]
+    )
+
+    SameResize_node = helper.make_node(
+        "SameResize_Batch",
+        ["inp"],
+        ["outp"],
+        domain="finn",
+        backend="fpgadataflow",
+        ImgDim=idim,
+        KernelDim=kdim,
+        Stride=stride,
+        NumChannels=num_ch,
+        inputDataType=str(idt.name),
+        PaddingStyle=pad_style,
+    )
+
+    graph = helper.make_graph(
+        nodes=[SameResize_node], name="sameresize_graph", inputs=[inp], outputs=[outp]
+    )
+
+    model = helper.make_model(graph, producer_name="sameresize-model")
+    model = ModelWrapper(model)
+
+    model.set_tensor_datatype("inp", idt)
+    model.set_tensor_datatype("outp", idt)
+
+    return model
+
+
+# image dimension
+@pytest.mark.parametrize("idim", [8, 16])
+# kernel dimension
+@pytest.mark.parametrize("kdim", [2, 3])
+# stride
+@pytest.mark.parametrize("stride", [1, 2])
+# number of channels
+@pytest.mark.parametrize("num_ch", [1, 2])
+# FINN input datatype
+@pytest.mark.parametrize("idt", [DataType.INT2, DataType.INT4])
+# execution mode
+@pytest.mark.parametrize("mode", ["cppsim", "rtlsim"])
+@pytest.mark.slow
+@pytest.mark.vivado
+def test_fpgadataflow_sameresize(idim, kdim, stride, num_ch, idt, mode):
+    pad_style = 2
+    assert idim % stride == 0, "Stride must divide input dimension."
+    # number of "same" windows over the input data
+    same_windows = idim // stride
+    odim = kdim + stride * (same_windows - 1)
+
+    # generate input data
+    x = gen_finn_dt_tensor(idt, [1, idim, idim, num_ch])
+    input_dict = {"inp": x}
+
+    model = make_single_sameresize_modelwrapper(
+        idim, odim, kdim, stride, num_ch, idt, pad_style
+    )
+    model = model.transform(InferShapes())
+    model = model.transform(SetExecMode(mode))
+    model = model.transform(GiveUniqueNodeNames())
+    if mode == "cppsim":
+        model = model.transform(PrepareCppSim())
+        model = model.transform(CompileCppSim())
+    elif mode == "rtlsim":
+        model = model.transform(PrepareIP(test_fpga_part, target_clk_ns))
+        model = model.transform(HLSSynthIP())
+        model = model.transform(PrepareRTLSim())
+    y_produced = oxe.execute_onnx(model, input_dict)["outp"]
+    expected_oshape = (1, odim, odim, num_ch)
+    assert y_produced.shape == expected_oshape
+
+    # calculate reference
+    # calculate correct padding according to parameters
+    pad = odim - idim
+    if pad_style == 2:
+        if pad % 2 == 0:
+            pad_up = pad // 2
+            pad_left = pad // 2
+        else:
+            pad_up = pad // 2 + 1
+            pad_left = pad // 2 + 1
+    else:
+        pad_up = pad // 2
+        pad_left = pad // 2
+    pad_down = pad - pad_up
+    pad_right = pad - pad_left
+
+    y_expected = np.pad(
+        x, ((0, 0), (pad_up, pad_down), (pad_left, pad_right), (0, 0)), "constant"
+    )
+
+    assert (y_produced == y_expected).all()