diff --git a/docker/Dockerfile.finn b/docker/Dockerfile.finn
index bb250885c45edc9b4ec47cea8199970f80c217dd..bf1ad4f62d00a7658051be71b415e20bacfcafb1 100644
--- a/docker/Dockerfile.finn
+++ b/docker/Dockerfile.finn
@@ -91,7 +91,7 @@ ARG FINN_EXP_COMMIT="f82c0d9868bb88ea045dfadb28508d327d287221"
 ARG BREVITAS_COMMIT="462f86cdc60f9915baf13afd1676fb21da44c2ee"
 ARG PYVERILATOR_COMMIT="e2ff74030de3992dcac54bf1b6aad2915946e8cb"
 ARG CNPY_COMMIT="4e8810b1a8637695171ed346ce68f6984e585ef4"
-ARG HLSLIB_COMMIT="0acc01d1889a96da6843708d60323d2ee76784fc"
+ARG HLSLIB_COMMIT="fbb07135b3d991602e8abe3f2c51212c11fd392b"
 ARG OMX_COMMIT="1dfc4aa2f2895632742cd5751520c6b472feb74e"
 ARG AVNET_BDF_COMMIT="2d49cfc25766f07792c0b314489f21fe916b639b"
 # finn-base
diff --git a/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py b/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py
index edbc07300c02c87b47a67297501163766c4cb0dc..19a42fe2d6b53879d401ec8bd462ddd59623dc1e 100644
--- a/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py
+++ b/src/finn/custom_op/fpgadataflow/streamingmaxpool_batch.py
@@ -42,8 +42,8 @@ class StreamingMaxPool_Batch(HLSCustomOp):
 
     def get_nodeattr_types(self):
         my_attrs = {
-            "ImgDim": ("i", True, 0),
-            "PoolDim": ("i", True, 0),
+            "ImgDim": ("ints", True, []),  # [H, W] = [Y, X]
+            "PoolDim": ("ints", True, []),  # [H, W] = [Y, X]
             "NumChannels": ("i", True, 0),
             # FINN DataTypes for inputs/outputs
             "dataType": ("s", True, ""),
@@ -59,10 +59,27 @@ class StreamingMaxPool_Batch(HLSCustomOp):
         """Returns FINN DataType of output."""
         return DataType[self.get_nodeattr("dataType")]
 
-    def get_normal_input_shape(self):
+    def get_1d_attrs_normalized(self):
+        # support both (1, D) and (D, 1) cases transparently:
+        # assume the dummy ('1') dimension is the Y-dimension, i.e.
+        # images and kernels (and their attributes) of dimension
+        # [H, W] = [Y, X] = [D, 1] or [1, D] are always mapped to [1, D]
         ifm_dim = self.get_nodeattr("ImgDim")
+        k = self.get_nodeattr("PoolDim")
+        ifm_ch = self.get_nodeattr("NumChannels")
+        if ifm_dim[1] == 1:
+            ifm_dim = ifm_dim[::-1]
+            k = k[::-1]
+        return (ifm_dim, k, ifm_ch)
+
+    def is_1d(self):
+        ifm_dim, k, ifm_ch = self.get_1d_attrs_normalized()
+        return (ifm_dim[0] == 1) and (k[0] == 1)
+
+    def get_normal_input_shape(self):
+        ifm_dim_h, ifm_dim_w = self.get_nodeattr("ImgDim")
         ifm_ch = self.get_nodeattr("NumChannels")
-        ishape = (1, ifm_dim, ifm_dim, ifm_ch)
+        ishape = (1, ifm_dim_h, ifm_dim_w, ifm_ch)
         return ishape
 
     def get_folded_input_shape(self):
@@ -74,14 +91,17 @@ class StreamingMaxPool_Batch(HLSCustomOp):
         return tuple(ret)
 
     def get_normal_output_shape(self):
-        k = self.get_nodeattr("PoolDim")
-        ifm_dim = self.get_nodeattr("ImgDim")
+        ifm_dim_h, ifm_dim_w = self.get_nodeattr("ImgDim")
+        k_h, k_w = tuple(self.get_nodeattr("PoolDim"))
         ifm_ch = self.get_nodeattr("NumChannels")
-        stride = k
+        stride_h = k_h
+        stride_w = k_w
         pad = 0
-        assert ifm_dim % k == 0, "StreamingMaxPool needs ImgDim % PoolDim == 0"
-        ofm_dim = compute_conv_output_dim(ifm_dim, k, stride, pad)
-        oshape = (1, ofm_dim, ofm_dim, ifm_ch)
+        assert ifm_dim_h % k_h == 0, "StreamingMaxPool needs ImgDim_h % PoolDim_h == 0"
+        assert ifm_dim_w % k_w == 0, "StreamingMaxPool needs ImgDim_w % PoolDim_w == 0"
+        ofm_dim_h = compute_conv_output_dim(ifm_dim_h, k_h, stride_h, pad)
+        ofm_dim_w = compute_conv_output_dim(ifm_dim_w, k_w, stride_w, pad)
+        oshape = (1, ofm_dim_h, ofm_dim_w, ifm_ch)
         return oshape
 
     def get_folded_output_shape(self):
@@ -98,9 +118,12 @@ class StreamingMaxPool_Batch(HLSCustomOp):
 
     def get_exp_cycles(self):
         # derived from StreamingMaxPool_Batch loop nest
-        k = self.get_nodeattr("PoolDim")
-        ifm_dim = self.get_nodeattr("ImgDim")
-        return int(ifm_dim * (ifm_dim + (ifm_dim / k)))
+        ifm_dim, k, ifm_ch = self.get_1d_attrs_normalized()
+        if self.is_1d():
+            return int(ifm_dim[1] + k[1])
+        else:
+            # TODO: adjust inaccurate formula
+            return int(ifm_dim[1] * (ifm_dim[1] + (ifm_dim[1] / k[1])))
 
     def get_instream_width(self):
         dt_bits = self.get_input_datatype().bitwidth()
@@ -167,11 +190,13 @@ class StreamingMaxPool_Batch(HLSCustomOp):
 
     def defines(self, var):
         numReps = 2
+        ifm_dim, k, ifm_ch = self.get_1d_attrs_normalized()
+
         self.code_gen_dict["$DEFINES$"] = [
             """#define ImgDim {}\n #define PoolDim {}\n
             #define NumChannels {}\n #define numReps {}""".format(
-                self.get_nodeattr("ImgDim"),
-                self.get_nodeattr("PoolDim"),
+                ifm_dim[1],
+                k[1],
                 self.get_nodeattr("NumChannels"),
                 numReps,
             )
@@ -207,12 +232,18 @@ class StreamingMaxPool_Batch(HLSCustomOp):
     def docompute(self):
         dtype = self.get_input_datatype()
         if dtype.bitwidth() == 1:
-            op = "StreamingMaxPool_Batch"
+            if self.is_1d():
+                raise Exception("Binary 1d MaxPool not implemented on HLS backend")
+            else:
+                op = "StreamingMaxPool_Batch"
             self.code_gen_dict["$DOCOMPUTE$"] = [
                 "%s<ImgDim, PoolDim, NumChannels>(in0, out, numReps);" % (op)
             ]
         else:
-            op = "StreamingMaxPool_Precision_Batch"
+            if self.is_1d():
+                op = "StreamingMaxPool_Precision_Batch_1d"
+            else:
+                op = "StreamingMaxPool_Precision_Batch"
             dtype = self.get_input_datatype()
             dtype_hls = dtype.get_hls_datatype_str()
             minval_str = str(int(dtype.min()))
diff --git a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py
index 03d7b73a567ef8e87890d4ecfdc697ab3c6120fd..c749d645dfbf9996c3eea430a0099cb5f12ee60a 100644
--- a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py
+++ b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py
@@ -235,24 +235,21 @@ class InferStreamingMaxPool(Transformation):
                 # mp_out_shape = model.get_tensor_shape(mp_output)
                 dt = model.get_tensor_datatype(mp_input)
                 mp_inst = getCustomOp(n)
-                # stride = mp_inst.get_nodeattr("strides")[0]
-                k = mp_inst.get_nodeattr("kernel_shape")[0]
-                # pad = mp_inst.get_nodeattr("pads")[0]
+                k_h, k_w = mp_inst.get_nodeattr("kernel_shape")
                 ifm_ch = mp_in_shape[-1]
-                ifm_dim = mp_in_shape[1]
-                # ofm_dim = mp_out_shape[1]
-                if ifm_dim % k == 0:
+                ifm_dim_h = mp_in_shape[1]
+                ifm_dim_w = mp_in_shape[2]
+                if ifm_dim_h % k_h == 0 and ifm_dim_w % k_w == 0:
                     # create equivalent StreamingMaxPool_Batch node
-                    # TODO support non-k strides
                     new_node = helper.make_node(
                         "StreamingMaxPool_Batch",
                         [mp_input],
                         [mp_output],
                         domain="finn.custom_op.fpgadataflow",
                         backend="fpgadataflow",
-                        PoolDim=k,
+                        PoolDim=(k_h, k_w),
                         NumChannels=ifm_ch,
-                        ImgDim=ifm_dim,
+                        ImgDim=(ifm_dim_h, ifm_dim_w),
                         dataType=dt.name,
                     )
                     graph.node.insert(node_ind, new_node)
diff --git a/tests/fpgadataflow/test_layer_streaming_maxpool_batch.py b/tests/fpgadataflow/test_layer_streaming_maxpool_batch.py
index 11ca79471d4eb2642a141ecdda9b4c55714ec76c..556e15f13607caa556daff079026f0b2bacb1b2b 100644
--- a/tests/fpgadataflow/test_layer_streaming_maxpool_batch.py
+++ b/tests/fpgadataflow/test_layer_streaming_maxpool_batch.py
@@ -47,12 +47,15 @@ from finn.util.basic import gen_finn_dt_tensor
 
 
 def make_single_maxpoolnhwc_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, idt):
+    k_h, k_w = k
+    ifm_dim_h, ifm_dim_w = ifm_dim
+    ofm_dim_h, ofm_dim_w = ofm_dim
     odt = idt
     inp = helper.make_tensor_value_info(
-        "inp", TensorProto.FLOAT, [1, ifm_dim, ifm_dim, ifm_ch]
+        "inp", TensorProto.FLOAT, [1, ifm_dim_h, ifm_dim_w, ifm_ch]
     )
     outp = helper.make_tensor_value_info(
-        "outp", TensorProto.FLOAT, [1, ofm_dim, ofm_dim, ifm_ch]
+        "outp", TensorProto.FLOAT, [1, ofm_dim_h, ofm_dim_w, ifm_ch]
     )
 
     mp_node = helper.make_node(
@@ -60,8 +63,8 @@ def make_single_maxpoolnhwc_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, idt):
         ["inp"],
         ["outp"],
         domain="finn.custom_op.general",
-        kernel_shape=[k, k],
-        strides=[k, k],
+        kernel_shape=[k_h, k_w],
+        strides=[k_h, k_w],
         pads=[0, 0, 0, 0],
     )
     graph = helper.make_graph(
@@ -78,12 +81,15 @@ def make_single_maxpoolnhwc_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, idt):
 
 
 def make_single_streamingmaxpool_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, idt):
+    k_h, k_w = k
+    ifm_dim_h, ifm_dim_w = ifm_dim
+    ofm_dim_h, ofm_dim_w = ofm_dim
     odt = idt
     inp = helper.make_tensor_value_info(
-        "inp", TensorProto.FLOAT, [1, ifm_dim, ifm_dim, ifm_ch]
+        "inp", TensorProto.FLOAT, [1, ifm_dim_h, ifm_dim_w, ifm_ch]
     )
     outp = helper.make_tensor_value_info(
-        "outp", TensorProto.FLOAT, [1, ofm_dim, ofm_dim, ifm_ch]
+        "outp", TensorProto.FLOAT, [1, ofm_dim_h, ofm_dim_w, ifm_ch]
     )
 
     smp_node = helper.make_node(
@@ -92,9 +98,9 @@ def make_single_streamingmaxpool_modelwrapper(k, ifm_ch, ifm_dim, ofm_dim, idt):
         ["outp"],
         domain="finn.custom_op.fpgadataflow",
         backend="fpgadataflow",
-        PoolDim=k,
+        PoolDim=[k_h, k_w],
         NumChannels=ifm_ch,
-        ImgDim=ifm_dim,
+        ImgDim=[ifm_dim_h, ifm_dim_w],
         dataType=idt.name,
     )
     graph = helper.make_graph(
@@ -115,24 +121,42 @@ def prepare_inputs(input_tensor):
 
 
 # input datatype
-@pytest.mark.parametrize("idt", [DataType.BIPOLAR, DataType.INT2])
+@pytest.mark.parametrize("idt", [DataType.BIPOLAR, DataType.INT4])
+# 1d maxpool
+@pytest.mark.parametrize("dim_1d", [False, True])
 # kernel size
 @pytest.mark.parametrize("k", [2, 4])
 # input dimension
-@pytest.mark.parametrize("ifm_dim", [4, 6, 8])
+@pytest.mark.parametrize("ifm_dim", [4, 8])
 # input channels
-@pytest.mark.parametrize("ifm_ch", [1, 2])  # , 2, 3, 4])
+@pytest.mark.parametrize("ifm_ch", [1, 3])  # 1,3
 # execution mode
 @pytest.mark.parametrize("exec_mode", ["rtlsim", "cppsim"])
 @pytest.mark.slow
 @pytest.mark.vivado
-def test_fpgadataflow_streamingmaxpool(idt, k, ifm_dim, ifm_ch, exec_mode):
-    stride = k
-    ofm_dim = int(((ifm_dim - k) / stride) + 1)
-    if ifm_dim % k != 0:
+def test_fpgadataflow_streamingmaxpool(idt, dim_1d, k, ifm_dim, ifm_ch, exec_mode):
+    ifm_dim_h = ifm_dim
+    k_h = k
+    if dim_1d:
+        ifm_dim_w = 1
+        k_w = 1
+    else:
+        ifm_dim_w = ifm_dim_h
+        k_w = k_h
+    ifm_dim = (ifm_dim_h, ifm_dim_w)
+    k = (k_h, k_w)
+
+    stride_h = k_h
+    stride_w = k_w
+    ofm_dim_h = int(((ifm_dim_h - k_h) / stride_h) + 1)
+    ofm_dim_w = int(((ifm_dim_w - k_w) / stride_w) + 1)
+    ofm_dim = (ofm_dim_h, ofm_dim_w)
+    if idt == DataType.BIPOLAR and dim_1d:
+        pytest.skip("Skipping binary StreamingMaxPool_1d (not implemented)")
+    if ifm_dim_h % k_h != 0 or ifm_dim_w % k_w != 0:
         pytest.skip("Skipping StreamingMaxPool test w/ ImgDim % PoolDim != 0")
 
-    x = gen_finn_dt_tensor(idt, (1, ifm_dim, ifm_dim, ifm_ch))
+    x = gen_finn_dt_tensor(idt, (1, ifm_dim_h, ifm_dim_w, ifm_ch))
     # prepare input data
     input_dict = prepare_inputs(x)
 
@@ -152,7 +176,7 @@ def test_fpgadataflow_streamingmaxpool(idt, k, ifm_dim, ifm_ch, exec_mode):
         model = model.transform(HLSSynthIP())
         model = model.transform(PrepareRTLSim())
     else:
-        raise Exception("Unknown exec_mode in test_fpgadataflow_slidingwindow")
+        raise Exception("Unknown exec_mode in test_layer_streaming_maxpool_batch")
 
     # execute model
     y_produced = oxe.execute_onnx(model, input_dict)["outp"]