diff --git a/tests/fpgadataflow/test_convert_to_hls_layers.py b/tests/fpgadataflow/test_convert_to_hls_layers.py index 99287c46d06bcc0df3143c587176703153720758..0c5a1b50d72f783f74f34e6990e4af76b42d92db 100644 --- a/tests/fpgadataflow/test_convert_to_hls_layers.py +++ b/tests/fpgadataflow/test_convert_to_hls_layers.py @@ -27,8 +27,8 @@ export_onnx_path = "test_output_tfc.onnx" def test_convert_to_hls_layers_tfc_w1a1(): - lfc = get_test_model_trained("TFC", 1, 1) - bo.export_finn_onnx(lfc, (1, 1, 28, 28), export_onnx_path) + tfc = get_test_model_trained("TFC", 1, 1) + bo.export_finn_onnx(tfc, (1, 1, 28, 28), export_onnx_path) model = ModelWrapper(export_onnx_path) model = model.transform(InferShapes()) model = model.transform(FoldConstants()) @@ -91,7 +91,7 @@ def test_convert_to_hls_layers_tfc_w1a1(): input_tensor = torch.from_numpy(nph.to_array(input_tensor)).float() assert input_tensor.shape == (1, 1, 28, 28) # do forward pass in PyTorch/Brevitas - expected = lfc.forward(input_tensor).detach().numpy() + expected = tfc.forward(input_tensor).detach().numpy() assert np.isclose(produced, expected, atol=1e-3).all() @@ -129,38 +129,34 @@ def test_convert_to_hls_layers_tfc_w1a2(): assert fc3.op_type == "StreamingFCLayer_Batch" assert model.get_tensor_shape(fc3.input[0]) == [1, 64] assert model.get_tensor_shape(fc3.input[1]) == [64, 10] - os.remove(export_onnx_path) - fc0w = getCustomOp(fc0) fc0w.set_nodeattr("SIMD", 784) fc0w.set_nodeattr("PE", 16) - fc1w = getCustomOp(fc1) fc1w.set_nodeattr("SIMD", 16) fc1w.set_nodeattr("PE", 16) - fc2w = getCustomOp(fc2) fc2w.set_nodeattr("SIMD", 16) fc2w.set_nodeattr("PE", 16) - fc3w = getCustomOp(fc3) fc3w.set_nodeattr("SIMD", 16) fc3w.set_nodeattr("PE", 10) - model = model.transform(CodeGen_npysim()) model = model.transform(Compile()) model = model.transform(SetExecMode("npysim")) - # model.save("tfc.onnx") - raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb") input_tensor = onnx.load_tensor_from_string(raw_i) # run using FINN-based execution input_dict = {"global_in": nph.to_array(input_tensor)} - output_dict = oxe.execute_onnx(model, input_dict) - produced = output_dict[list(output_dict.keys())[0]] - # run using PyTorch/Brevitas - input_tensor = torch.from_numpy(nph.to_array(input_tensor)).float() - assert input_tensor.shape == (1, 1, 28, 28) - # do forward pass in PyTorch/Brevitas - expected = tfc.forward(input_tensor).detach().numpy() + output_dict = oxe.execute_onnx(model, input_dict, True) + produced = output_dict[model.graph.output[0].name] + model = ModelWrapper(export_onnx_path) + model = model.transform(InferShapes()) + model = model.transform(FoldConstants()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(Streamline()) + golden_output_dict = oxe.execute_onnx(model, input_dict, True) + expected = golden_output_dict[model.graph.output[0].name] assert np.isclose(produced, expected, atol=1e-3).all() + os.remove(export_onnx_path)