diff --git a/src/finn/core/modelwrapper.py b/src/finn/core/modelwrapper.py index 3ddcaa03c3d62daaf1ffd9f5ae6c3857460994fc..e99a6ef4cd40d6323d77354d3c9b4be341d7649c 100644 --- a/src/finn/core/modelwrapper.py +++ b/src/finn/core/modelwrapper.py @@ -253,14 +253,12 @@ class ModelWrapper: return None def find_producer(self, tensor_name): - """Finds and returns the node that produces the tensor with given name. - Currently only works for linear graphs.""" - all_outputs = [x.output[0] for x in self._model_proto.graph.node] - try: - producer_ind = all_outputs.index(tensor_name) - return self._model_proto.graph.node[producer_ind] - except ValueError: - return None + """Finds and returns the node that produces the tensor with given name.""" + ret = None + for x in self._model_proto.graph.node: + if tensor_name in x.output: + ret = x + return ret def find_upstream(self, tensor_name, finder_fxn): """Follow the producer chain upstream, calling finder_fxn on each upstream diff --git a/src/finn/core/onnx_exec.py b/src/finn/core/onnx_exec.py index 0f47a9104e3d2ef3ee06ef908e302344d78e0b17..278b5ee168afa07b0dcbe053744205b760b92b91 100644 --- a/src/finn/core/onnx_exec.py +++ b/src/finn/core/onnx_exec.py @@ -84,17 +84,25 @@ def execute_node(node, context, graph): output_list = sess.run(None, input_dict) for output_ind in range(len(node.output)): + #get the name of the target buffer from node.output outp = node.output[output_ind] - if output_list[output_ind].shape != context[outp].shape: + + #retrieve the index of that name in node_outputs + for i in range(len(node_outputs)): + if outp == node_outputs[i].name: + list_ind = i + + #use that index to index output_list + if output_list[list_ind].shape != context[outp].shape: raise Exception( """Output shapes disagree after node execution: found %s vs expected %s""" % ( - str(output_list[output_ind].shape.shape), + str(output_list[list_ind].shape.shape), str(context[outp].shape), ) ) - context[outp] = output_list[output_ind] + context[outp] = output_list[list_ind] def execute_onnx(model, input_dict, return_full_exec_context=False): diff --git a/src/finn/transformation/insert_topk.py b/src/finn/transformation/insert_topk.py new file mode 100644 index 0000000000000000000000000000000000000000..a6cd659e07d6796a18291fd918a33a7c7bcf0ad9 --- /dev/null +++ b/src/finn/transformation/insert_topk.py @@ -0,0 +1,91 @@ +# Copyright (c) 2020, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import numpy as np + +from onnx import TensorProto +from onnx import helper as oh + +from finn.custom_op.registry import getCustomOp +from finn.transformation import Transformation + + +class InsertTopK(Transformation): + """Add TopK node at the network output.""" + + def __init__(self, k=5, axis=-1, largest=1, sorted=1): + super().__init__() + self.k = k + self.axis = axis + self.largest = largest + self.sorted = sorted + + def apply(self, model): + # get name of output tensor + graph_out_name = model.graph.output[0].name + # find final node + final_node = model.find_producer(graph_out_name) + # if a top-select op is already present, do nothing + if final_node.op_type == "TopK": + return (model, False) + else: + out_shape = model.get_tensor_shape(graph_out_name) + out_dtype = model.get_tensor_datatype(graph_out_name) + #adjust shape + out_shape[self.axis] = self.k + # make new buffer + k_tensor = np.array([self.k]).astype(np.int64) + k_value = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.INT64, [1] + ) + topk_values = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.FLOAT, out_shape + ) + topk_indices = oh.make_tensor_value_info( + model.make_new_valueinfo_name(), TensorProto.INT64, out_shape + ) + model.graph.value_info.append(k_value) + model.set_tensor_datatype(k_value.name, out_dtype)#TODO set to int64 + model.graph.value_info.append(topk_values) + model.set_tensor_datatype(topk_values.name, out_dtype) + #create and append topk node + model.set_initializer(k_value.name, k_tensor) + topk_node = oh.make_node( + 'TopK', + inputs=[graph_out_name, k_value.name], + outputs=[topk_values.name, topk_indices.name], + axis=self.axis, + largest=self.largest, + sorted=self.sorted + ) + model.graph.node.append(topk_node) + #replace the existing output definition with topk indices + model.graph.output.insert(0,topk_indices) + model.graph.output.pop(1) + return (model, True) + diff --git a/tests/transformation/test_topk_insert.py b/tests/transformation/test_topk_insert.py new file mode 100644 index 0000000000000000000000000000000000000000..ded98f32aed636191e5cfbec4362a4e55a9c313a --- /dev/null +++ b/tests/transformation/test_topk_insert.py @@ -0,0 +1,57 @@ +import onnx +from finn.util.test import get_test_model_trained +import brevitas.onnx as bo +import numpy as np +import onnx.numpy_helper as nph +import torch + +from finn.core.modelwrapper import ModelWrapper +from finn.transformation.general import GiveReadableTensorNames, GiveUniqueNodeNames +from finn.transformation.infer_shapes import InferShapes +from finn.transformation.infer_datatypes import InferDataTypes +from finn.transformation.fold_constants import FoldConstants +from finn.transformation.insert_topk import InsertTopK + +import finn.core.onnx_exec as oxe +from pkgutil import get_data + +import pytest + +export_onnx_path = "test_output_lfc.onnx" + +@pytest.mark.parametrize("k", [1,5,10]) +def test_topk_insert(k): + tfc = get_test_model_trained("TFC", 1, 1) + bo.export_finn_onnx(tfc, (1, 1, 28, 28), export_onnx_path) + model = ModelWrapper(export_onnx_path) + + #do transformations (no topk) + model = model.transform(InferShapes()) + model = model.transform(FoldConstants()) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(InferDataTypes()) + + #verification: generate random input, run through net, streamline, run again, check that output is top-k + raw_i = get_data("finn", "data/onnx/mnist-conv/test_data_set_0/input_0.pb") + input_tensor = onnx.load_tensor_from_string(raw_i) + input_brevitas = torch.from_numpy(nph.to_array(input_tensor)).float() + output_golden = tfc.forward(input_brevitas).detach().numpy() + output_golden_topk = np.flip(output_golden.flatten().argsort())[:k] + + input_dict = {"global_in": nph.to_array(input_tensor)} + output_dict = oxe.execute_onnx(model, input_dict) + output_pysim = output_dict[list(output_dict.keys())[0]] + + #insert top-k + model = model.transform(InsertTopK(k)) + model = model.transform(GiveUniqueNodeNames()) + model = model.transform(GiveReadableTensorNames()) + model = model.transform(InferShapes()) + + #verify output of top-k + output_dict_topk = oxe.execute_onnx(model, input_dict) + output_pysim_topk = output_dict_topk[list(output_dict_topk.keys())[0]] + + assert np.array_equal(output_golden_topk.flatten(), output_pysim_topk.astype(np.int).flatten()) +