diff --git a/tests/brevitas/test_brevitas_qlinear.py b/tests/brevitas/test_brevitas_qlinear.py new file mode 100644 index 0000000000000000000000000000000000000000..62ed358dc9030c35e865921ca7cf9e80c34020fd --- /dev/null +++ b/tests/brevitas/test_brevitas_qlinear.py @@ -0,0 +1,78 @@ +# Copyright (c) 2021, Xilinx +# All rights reserved. +# +# Redistribution and use in source and binary forms, with or without +# modification, are permitted provided that the following conditions are met: +# +# * Redistributions of source code must retain the above copyright notice, this +# list of conditions and the following disclaimer. +# +# * Redistributions in binary form must reproduce the above copyright notice, +# this list of conditions and the following disclaimer in the documentation +# and/or other materials provided with the distribution. +# +# * Neither the name of FINN nor the names of its +# contributors may be used to endorse or promote products derived from +# this software without specific prior written permission. +# +# THIS SOFTWARE IS PROVIDED BY THE COPYRIGHT HOLDERS AND CONTRIBUTORS "AS IS" +# AND ANY EXPRESS OR IMPLIED WARRANTIES, INCLUDING, BUT NOT LIMITED TO, THE +# IMPLIED WARRANTIES OF MERCHANTABILITY AND FITNESS FOR A PARTICULAR PURPOSE ARE +# DISCLAIMED. IN NO EVENT SHALL THE COPYRIGHT HOLDER OR CONTRIBUTORS BE LIABLE +# FOR ANY DIRECT, INDIRECT, INCIDENTAL, SPECIAL, EXEMPLARY, OR CONSEQUENTIAL +# DAMAGES (INCLUDING, BUT NOT LIMITED TO, PROCUREMENT OF SUBSTITUTE GOODS OR +# SERVICES; LOSS OF USE, DATA, OR PROFITS; OR BUSINESS INTERRUPTION) HOWEVER +# CAUSED AND ON ANY THEORY OF LIABILITY, WHETHER IN CONTRACT, STRICT LIABILITY, +# OR TORT (INCLUDING NEGLIGENCE OR OTHERWISE) ARISING IN ANY WAY OUT OF THE USE +# OF THIS SOFTWARE, EVEN IF ADVISED OF THE POSSIBILITY OF SUCH DAMAGE. + +import pytest +import os +import numpy as np +import torch +import brevitas.onnx as bo +from brevitas.nn import QuantLinear +from brevitas.core.quant import QuantType +from finn.core.modelwrapper import ModelWrapper +from finn.core.datatype import DataType +import finn.core.onnx_exec as oxe +from finn.transformation.infer_shapes import InferShapes +from finn.util.basic import gen_finn_dt_tensor + +export_onnx_path = "test_brevitas_qlinear.onnx" + + +@pytest.mark.parametrize("bias", [False, True]) +@pytest.mark.parametrize("out_features", [4]) +@pytest.mark.parametrize("in_features", [3]) +@pytest.mark.parametrize("w_bits", [4]) +@pytest.mark.parametrize("i_dtype", [DataType.UINT4]) +def test_brevitas_qlinear(bias, out_features, in_features, w_bits, i_dtype): + i_shape = (1, in_features) + w_shape = (out_features, in_features) + b_linear = QuantLinear( + out_features=out_features, + in_features=in_features, + bias=bias, + bias_quant_type=QuantType.FP, + weight_bit_width=w_bits, + weight_quant_type=QuantType.INT, + weight_scaling_per_output_channel=True, + ) + weight_tensor_fp = np.random.uniform(low=-1.0, high=1.0, size=w_shape).astype( + np.float32 + ) + b_linear.weight.data = torch.from_numpy(weight_tensor_fp) + b_linear.eval() + bo.export_finn_onnx(b_linear, i_shape, export_onnx_path) + model = ModelWrapper(export_onnx_path) + model = model.transform(InferShapes()) + inp_tensor = gen_finn_dt_tensor(i_dtype, i_shape) + idict = {model.graph.input[0].name: inp_tensor} + odict = oxe.execute_onnx(model, idict, True) + produced = odict[model.graph.output[0].name] + inp_tensor = torch.from_numpy(inp_tensor).float() + expected = b_linear.forward(inp_tensor).detach().numpy() + + assert np.isclose(produced, expected, atol=1e-3).all() + os.remove(export_onnx_path)