diff --git a/tests/fpgadataflow/test_fifosizing.py b/tests/fpgadataflow/test_fifosizing.py index d93c5630dbd1a4a1d451b9754656df2f4e999309..34875e89757b26db053c1ccc60d6984454ccdfa2 100644 --- a/tests/fpgadataflow/test_fifosizing.py +++ b/tests/fpgadataflow/test_fifosizing.py @@ -31,15 +31,16 @@ import pkg_resources as pk import pytest import json -import numpy as np import shutil -from qonnx.custom_op.registry import getCustomOp from qonnx.transformation.general import GiveUniqueNodeNames import finn.builder.build_dataflow as build import finn.builder.build_dataflow_config as build_cfg from finn.analysis.fpgadataflow.dataflow_performance import dataflow_performance -from finn.transformation.fpgadataflow.derive_characteristic import DeriveCharacteristic +from finn.transformation.fpgadataflow.derive_characteristic import ( + DeriveCharacteristic, + DeriveFIFOSizes, +) from finn.transformation.fpgadataflow.hlssynth_ip import HLSSynthIP from finn.transformation.fpgadataflow.insert_dwc import InsertDWC from finn.transformation.fpgadataflow.prepare_ip import PrepareIP @@ -48,41 +49,6 @@ from finn.util.basic import make_build_dir def custom_step_fifosize(model, cfg): - # TODO convert to NodeLocalTransformation - # TODO handle chrc for input and output nodes - all_act_tensors = [x.name for x in model.graph.value_info] - for tensor_nm in all_act_tensors: - # generate accumulated characteristic functions - prod = model.find_producer(tensor_nm) - cons = model.find_consumer(tensor_nm) - if prod is None or cons is None: - continue - prod = getCustomOp(prod) - period = prod.get_nodeattr("io_characteristic_period") - prod_chrc = prod.get_nodeattr("io_characteristic") - prod_chrc = np.asarray(prod_chrc).reshape(2, -1)[1] - cons = getCustomOp(cons) - cons_chrc = cons.get_nodeattr("io_characteristic") - cons_chrc = np.asarray(cons_chrc).reshape(2, -1)[0] - # find minimum phase shift satisfying the constraint - pshift_min = period - for pshift_cand in range(period): - pshift_condition = [ - (prod_chrc[i + pshift_cand] >= cons_chrc[i]) - for i in range(period - pshift_cand) - ] - if all(pshift_condition): - pshift_min = pshift_cand - break - fifo_depth = max( - [(prod_chrc[i + pshift_cand] - cons_chrc[i]) for i in range(pshift_min)] - ) - prod.set_nodeattr("outFIFODepth", fifo_depth) - cons.set_nodeattr("inFIFODepth", fifo_depth) - return model - - -def custom_step_fifocharacterize(model, cfg): model = model.transform(InsertDWC()) model = model.transform(GiveUniqueNodeNames()) model = model.transform( @@ -92,6 +58,7 @@ def custom_step_fifocharacterize(model, cfg): model = model.transform(PrepareRTLSim()) period = model.analysis(dataflow_performance)["max_cycles"] + 10 model = model.transform(DeriveCharacteristic(period)) + model = model.transform(DeriveFIFOSizes()) return model @@ -101,8 +68,7 @@ def test_fifosizing(): chkpt_name = pk.resource_filename("finn.qnn-data", "build_dataflow/model.onnx") tmp_output_dir = make_build_dir("build_fifosizing_") steps = build_cfg.default_build_dataflow_steps - steps.insert(10, custom_step_fifocharacterize) - steps.insert(11, custom_step_fifosize) + steps.insert(10, custom_step_fifosize) cfg = build_cfg.DataflowBuildConfig( output_dir=tmp_output_dir, auto_fifo_depths=False,