From 05f11518f765b3167566263eb062e9588366c922 Mon Sep 17 00:00:00 2001 From: Yaman Umuroglu <maltanar@gmail.com> Date: Thu, 14 Jul 2022 15:28:43 +0200 Subject: [PATCH] [Test] add 1D upsample testcase, currently fails --- tests/fpgadataflow/test_fpgadataflow_upsampler.py | 11 ++++++++--- 1 file changed, 8 insertions(+), 3 deletions(-) diff --git a/tests/fpgadataflow/test_fpgadataflow_upsampler.py b/tests/fpgadataflow/test_fpgadataflow_upsampler.py index d1ef0b890..534e1ce50 100644 --- a/tests/fpgadataflow/test_fpgadataflow_upsampler.py +++ b/tests/fpgadataflow/test_fpgadataflow_upsampler.py @@ -117,7 +117,7 @@ class PyTorchTestModel(nn.Module): # param datatype @pytest.mark.parametrize("dt", [DataType["INT8"]]) -# Width/height of square input feature map +# spatial dim input feature map @pytest.mark.parametrize("IFMDim", [3, 5]) # upscaling factor @pytest.mark.parametrize("scale", [2, 3]) @@ -125,14 +125,19 @@ class PyTorchTestModel(nn.Module): @pytest.mark.parametrize("NumChannels", [4]) # execution mode @pytest.mark.parametrize("exec_mode", ["cppsim", "rtlsim"]) +# whether to use 1D or 2D square testcases +@pytest.mark.parametrize("is_1d", [False, True]) @pytest.mark.fpgadataflow @pytest.mark.vivado @pytest.mark.slow -def test_fpgadataflow_upsampler(dt, IFMDim, scale, NumChannels, exec_mode): +def test_fpgadataflow_upsampler(dt, IFMDim, scale, NumChannels, exec_mode, is_1d): atol = 1e-3 # Create the test model and inputs for it torch_model = PyTorchTestModel(upscale_factor=scale) - input_shape = (1, NumChannels, IFMDim, IFMDim) + if is_1d: + input_shape = (1, NumChannels, IFMDim, 1) + else: + input_shape = (1, NumChannels, IFMDim, IFMDim) test_in = torch.arange(0, np.prod(np.asarray(input_shape))) # Limit the input to values valid for the given datatype test_in %= dt.max() - dt.min() + 1 -- GitLab