diff --git a/src/finn/custom_op/im2col.py b/src/finn/custom_op/im2col.py index 82a6b140f7af1be4e5c0f429d077b99c7865383e..8ed0041704d421dab587f08bcbcd9e739e8434e9 100644 --- a/src/finn/custom_op/im2col.py +++ b/src/finn/custom_op/im2col.py @@ -80,6 +80,8 @@ class Im2Col(CustomOp): "input_shape": ("s", True, ""), "pad_amount": ("i", False, 0), "pad_value": ("i", False, 0), + # depthwise: if != 0, infer ConvolutionInputGenerator with depthwise == 1 + "depthwise": ("i", False, 0), } def make_shape_compatible_op(self, model): diff --git a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py index d421a5f3ef8ca980b399087de1482b2ae913da1b..b70b126680d650547cf376dd601c048c73a1cfd4 100644 --- a/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py +++ b/src/finn/transformation/fpgadataflow/convert_to_hls_layers.py @@ -34,6 +34,7 @@ from finn.custom_op.registry import getCustomOp from finn.transformation.infer_shapes import InferShapes from finn.transformation.infer_datatypes import InferDataTypes import finn.core.data_layout as DataLayout +from finn.util.basic import get_by_name class InferConvInpGen(Transformation): @@ -56,6 +57,7 @@ class InferConvInpGen(Transformation): k = i2c_inst.get_nodeattr("kernel_size") pad = i2c_inst.get_nodeattr("pad_amount") pad_val = i2c_inst.get_nodeattr("pad_value") + depthwise = i2c_inst.get_nodeattr("depthwise") ifm_ch = i2c_in_shape[-1] ifm_dim = i2c_in_shape[1] ofm_dim = i2c_out_shape[1] @@ -67,7 +69,11 @@ class InferConvInpGen(Transformation): if pad > 0: # if padding enabled, ensure pad_val supported by DataType - assert dt.allowed(pad_val), "Im2Col DataType must support pad_val" + # assert dt.allowed(pad_val),"""FMPadding_Batch DataType + # must support pad_val""" + assert ( + pad_val == 0 + ), "FMPadding_Batch doesn't currently support pad_val!= 0" odim_padding = ifm_dim + 2 * pad @@ -112,6 +118,7 @@ class InferConvInpGen(Transformation): Stride=stride, inputDataType=dt.name, outputDataType=dt.name, + depthwise=depthwise, ) graph.node.insert(ConvInpGen_node_idx, ConvInpGen_node) # remove old nodes @@ -169,6 +176,137 @@ class InferStreamingMaxPool(Transformation): return (model, graph_modified) +class InferPool_Batch(Transformation): + """If kernel_shape > strides, replace Pool layer with with of Im2col + + pool(with kernel_shape == strides), plus Transpose layers to keep the original + data layout.""" + + def apply(self, model): + graph = model.graph + node_ind = 0 + graph_modified = False + for n in graph.node: + node_ind += 1 + if n.op_type in ["MaxPool"]: + # extract pool parameters + k = get_by_name(n.attribute, "kernel_shape").ints[-1] + stride = get_by_name(n.attribute, "strides").ints[-1] + + if k <= stride: + continue + + try: + pad = get_by_name(n.attribute, "pads").ints[-1] + except AttributeError: + pad = 0 + + node_input = n.input[0] + node_output = n.output[0] + idt = model.get_tensor_datatype(node_input) + if not idt.is_integer(): + continue + + # odt = model.get_tensor_datatype(node_output) + + ifm_ch = model.get_tensor_shape(n.input[0])[1] # assume NCHW + ofm_ch = ifm_ch + ifm_dim = model.get_tensor_shape(n.input[0])[-1] # assume NCHW + ofm_dim = model.get_tensor_shape(n.output[0])[-1] # assume NCHW + # create new intermediate values + inp_trans_out = helper.make_tensor_value_info( + model.make_new_valueinfo_name(), + TensorProto.FLOAT, + (1, ifm_dim, ifm_dim, ifm_ch), # NHWC + ) + graph.value_info.append(inp_trans_out) + inp_trans_out = inp_trans_out.name + model.set_tensor_datatype(inp_trans_out, idt) + + im2col_out = helper.make_tensor_value_info( + model.make_new_valueinfo_name(), + TensorProto.FLOAT, + (1, ofm_dim, ofm_dim, ifm_ch * k * k), + ) + graph.value_info.append(im2col_out) + im2col_out = im2col_out.name + model.set_tensor_datatype(im2col_out, idt) + + pool_output = helper.make_tensor_value_info( + model.make_new_valueinfo_name(), + TensorProto.FLOAT, + (1, ofm_dim, ofm_dim, ofm_ch), + ) + graph.value_info.append(pool_output) + pool_output = pool_output.name + # model.set_tensor_datatype(pool_output, odt) + + # create new nodes + # NCHW -> NHWC + inp_trans_node = helper.make_node( + "Transpose", [node_input], [inp_trans_out], perm=[0, 2, 3, 1] + ) + + if n.op_type == "MaxPool": + pool_fxn = "MaxPool" + pad_value = idt.min() + else: + raise Exception( + "pad_value and pool_fxn not configured for {}".format(n.op_type) + ) + + # format input tensor + im2col_node = helper.make_node( + "Im2Col", + [inp_trans_out], + [im2col_out], + domain="finn", + stride=stride, + kernel_size=k, + pad_amount=pad, + pad_value=pad_value, + depthwise=1, + input_shape="(1,{},{},{})".format(ifm_dim, ifm_dim, ifm_ch), + ) + + # Warning PE has to be equal to ifm_ch until Im2Col is replaced by + # ConvolutionInputGenerator with depthwise=1. + # For other settings the output will be incorrect due to incorrect input + # data layout + pool_node = helper.make_node( + "Pool_Batch", + [im2col_out], + [pool_output], + domain="finn", + backend="fpgadataflow", + dataType=idt.name, + Channels=ifm_ch, + PE=ifm_ch, + KernelSize=k, + Function=pool_fxn, + OutImgDim=ofm_dim, + BatchSize=1, + ) + + # NHWC -> NCHW + out_trans_node = helper.make_node( + "Transpose", [pool_output], [node_output], perm=[0, 3, 1, 2] + ) + + # insert nodes where the conv is to preserve topological ordering + graph.node.insert(node_ind, inp_trans_node) + graph.node.insert(node_ind + 1, im2col_node) + graph.node.insert(node_ind + 2, pool_node) + graph.node.insert(node_ind + 3, out_trans_node) + # remove old node + graph.node.remove(n) + graph_modified = True + + if graph_modified: + model = model.transform(InferShapes()) + model = model.transform(InferDataTypes()) + return (model, graph_modified) + + class InferBinaryStreamingFCLayer(Transformation): """Convert XnorPopcountMatMul layers to StreamingFCLayer_Batch layers. Any immediately following MultiThreshold