
Training Quantized Neural Networks
Nick Fraser, Giulio Gambardella, Michaela Blott, Thomas Preusser

Xilinx Research, Ireland

© Copyright 2017 Xilinx
.

Page 2

Part of the CTO organization

– 9 (out of 35 worldwide) researchers

With a very active internship program

– 6-10 students & visiting scholars

Visiting professors on sabbatical

Postdoc on Marie-Curie Fellowship

Xilinx Research - Ireland

© Copyright 2017 Xilinx
.

Demonstrated to work well for numerous use cases

New York Times: “The Great A.I. Awakening”
(Dec 2016)

Drones Can Defeat Humans Using

Artificial Intelligence

Elon Musk’s Billion-Dollar AI Plan

Is About Far More Than Saving the World

Page 3

© Copyright 2017 Xilinx
.

NNs are the predominant AI algorithm

– Can outperform humans and traditional CV algorithms for image

recognition

NNs have the theoretical property of being a “universal

approximation function”

– Empirically outperforming other approximator functions

Page 4

Neural Networks

Increasing adoption: replacing other solutions and for previously unsolved

problems

© Copyright 2017 Xilinx
.

Training

Process for a machine to learn by

optimizing models (weights) from data.

➢ Requires little expertise/specialization

in the actual target domain.

Inference

Using trained models to predict or

estimate outcomes from new

observations.

Neural Networks: Training vs Inference

Page 5

© Copyright 2017 Xilinx
.

Page 6

Challenges: Wide & Increasing Range of Applications
ADAS

Hearing Aids

Translation

Service

Real-Time,

Sensor-Based

Control

Medical

Diagnoses

3D Reconstruction

from Drone Images

Recommender

Systems

Health

Assistance

© Copyright 2017 Xilinx
.

Page 7

Challenges: Different Figures of Merits

Real-time systems have clearly defined

throughput and latency constraints.
Embedded Systems: heavily power constrained

Data Centers: OPEX = f(energy)

Accuracy requirements vary with

applications:

Recommender systems, data

analytics vs ADAS.

Reduced latency: Results in

a better user experience in

cloud-based systems

(Google defines 7ms) and

vital for robotics.

© Copyright 2017 Xilinx
.

The predominant CNN computation is linear algebra

– Demands lots of (simple) computation and lots of parameters (memory)

• AlexNet: 244 MB & 1.5 GOPS, VGG16: 552 MB & 30.8 GOPS; GoogleNet: 41.9 MB & 3.0 GOPS for ImageNet

Page 8

Challenges: Highly Compute and Memory Intensive

«cat»

Output(w,h,m) +=

input(w+x,h+y,d)*filter(m,

x,y,d);

Challenge 2:

billions of multiply-accumulate ops & tens of megabytes of parameter data

© Copyright 2017 Xilinx
.

Challenges: Neural Networks Will Continue to Change

AlexNet (2012)

GoogleNet (2014)

DenseNet (2016)

Number and types of

layers are changing

Graph Connectivity

is changing

Data representations and

quantization methods

are changing

Challenge:

Continuous stream of new algorithms

Page 9

© Copyright 2017 Xilinx
.

Each combination yields a different point in the design space:

error, cost, throughput, latency, power

10

Challenge: Multidimensional Design Space

ML task (growing list)
• Vision: image classification,

recognition, semantic

segmentation, SLAM

• Audio: voice control, noise filtering

• Gaming strategy

• Recommender systems

Neural Network

topology
• AlexNet, GoogleNet,

ResNet-X, Enet, Yolo

Training data sets
• ImageNet, COCO,

VOC, GTSRB,

MNIST, CIFAR-10,

GSVHN, Cityscapes,

KITTY

Training framework
• Mxnet, Caffe,

Tensorflow, Theano,

Darknet

Compute & data types
• Numerical representation &

precision, quantization

functions, activation

functions, non-linearity

Hyperparameters
Learning rates, regularization

scheme, cost function,

optimization scheme, pre/post

processing

Architecture
Dataflow, systolic array,

compression engines, sparse

representations

End Device

Trained Neural Network

Trained Neural Network

© Copyright 2017 Xilinx
.

Page 11

Opportunity: Customized Neural Networks

hardware cost/ performance/ power

e
rr

o
r

Design and training of FPGA-friendly neural networks that provide end-solutions that

are high-performance and more power-efficient than any other hardware

– Hardware cost, power, performance, latency

© Copyright 2017 Xilinx
.

Opportunity: Customized ML Processor Datapath

IFM buffers

Weights,

Thresholds Weights, Thresholds

PL, DSPs

Generality vs Performance

Latency vs Resources

Latency vs generality

Page 12

© Copyright 2017 Xilinx
.

Cost per operation is greatly reduced

Memory cost is greatly reduced

– Large networks can fit entirely into on-chip memory (OCM) (UltraRAM, BRAM)

Today’s FPGAs have a much higher peak performance for reduced precision operations

Focus: Reduced Precision - Quantization

Page 13

Precision Cost per Op

LUT

Cost per Op

DSP

MB

needed

(AlexNet)

TOps/s

(KU115)*

TOps/s

(VU9P)**

TOps/s

(ZU19EG)*

1b 2.5 0 7.6 ~46 ~100 ~66

4b 16 0 30.5 ~11 ~15 ~16

8b 45 0 61 ~3 ~6 ~4

16b 15 0.5 122 ~1 ~4 ~1

32b 178 2 244 ~0.5 ~1 ~0.3

100x

*Assumptions: Application can fill device to 70% (fully parallelizable) 250MHZ

**Assumptions: Application can fill device to 70% (fully parallelizable) 300MHZ

© Copyright 2017 Xilinx
.

Page 14

Quantizing and Fixed Point saves Power

Source: Bill Dally (Stanford), Cadence Embedded Neural

Network Summit, February 1, 2017

© Copyright 2017 Xilinx
.

Just reducing precision,

reduce hardware cost &

increases error

Recuperate accuracy by

retraining & increasing

network size

1b, 2b and 4b provide

pareto optimal solutions

Do we loose Accuracy?
Compensating Quantization with Network Complexity

• Intel: Wide Reduced Precision Networks

https://arxiv.org/pdf/1709.01134.pdf

Page 15

https://arxiv.org/pdf/1709.01134.pdf

© Copyright 2017 Xilinx
.

Accuracy of Quantized Neural Networks (QNNs) Improving
Published Results for FP CNNs, QNNs and binarized NNs (BNNs)

Page 16

• Accuracy results are improving rapidly through for example new training techniques, topological

changes and other methods

0.00

10.00

20.00

30.00

40.00

50.00

60.00

06/07/2009 18/11/2010 01/04/2012 14/08/2013 27/12/2014 10/05/2016 22/09/2017 04/02/2019

Top-5 Error (ImageNet)

BNN CNN Reduced Precision Internal

© Copyright 2017 Xilinx
.

Quantized Neural Networks provide the opportunity to create hardware

implementations that are faster, smaller, or more power-efficient.

Page 17

Summary

© Copyright 2017 Xilinx
.

Introduction to Neural Networks:

– Neural network layers

– The backpropagation algorithm

Quantized Neural Networks

– Data representations

– Binarized Neural Networks

– Quantization-aware backpropagation

Training Binary Neural Networks in Lasagne

Agenda

Page 18

© Copyright 2017 Xilinx
.

Page 19

Neural Networks: A Quick Introduction

© Copyright 2017 Xilinx
.

Neural networks are computational

graphs constructed from one or more

layers.

Layers: Usually linear operations

followed by a non-linear activation

function

– Dot product = fully connected layer

– 2D convolution = convolutional layer

Other common layers:

– Pooling layers (Max / Average)

– Batch normalization

Page 20

Neural Networks - Layers

© Copyright 2017 Xilinx
.

Also known as: inner product layer or

dense layer.

Each neuron is connected to every

neuron of the previous layer.

A weight is associated with each

“synapse”.

Can be written as a matrix-vector

product with an element-wise non-

linearity applied afterwards.

Page 21

Neural Networks – Fully Connected Layer

𝑊𝑖 =×

𝑊𝑖 ∙ 𝑎𝑖

𝑎𝑖+1
Act_func(•)

𝑎𝑖

© Copyright 2017 Xilinx
.

Each neuron applies a convolution to

all images in the previous layer.

Weights represent the filters used for

convolutions.

Can be lowered to a matrix-matrix

multiply.

Non-linear activation applied to each

output pixel.

Page 22

Neural Networks – Convolutional Layer

Source: http://cs231n.github.io/assets/conv-demo/index.html

© Copyright 2017 Xilinx
.

Most popular: the rectified linear unit

(ReLU)

Other common ones include: tanh,

leaky ReLU.

For binarized neural networks, the

step function is often used.

Page 23

Neural Networks – Activation Functions

Source: http://cs231n.github.io/neural-networks-1/

© Copyright 2017 Xilinx
.

Crude downsamplers of images.

Reduces compute in subsequent

layers.

Max pooling takes the maximum

value from a window of pixels.

Average pooling is another common

type.

Page 24

Neural Networks – Pooling Layer

Source: http://cs231n.github.io/convolutional-networks/

© Copyright 2017 Xilinx
.

Normalizes the statistics of activation values of

particular neurons.

Adds post-scaling to allow some neurons to be

“more important” than others.

Significantly reduces the training time of

networks.

Can improve the accuracy.

Batch Normalization Layer

Page 25

© Copyright 2017 Xilinx
.

Training Neural Networks - Backpropagation

Layer 0
Layer 1

Layer 2
Layer N-1

…Training
Input
Data set

Outputs
Loss

computationGrad. N

Optional
Pre-

processor /
dataset

augmenter

Purpose: calculate the gradients associated with each weight within a network.

Forward path is the same as inference.

Gradients calculated from a semi-differentiable loss function.

Gradients passed back and transformed layer-by-layer.

Weights updated from the provided gradients, input activations and an optimization algorithm.

Page 26

© Copyright 2017 Xilinx
.

Backpropagation: Forward Path

𝑊𝑖 =×

𝑊𝑖 ∙ 𝑎𝑖

𝑎𝑖+1
Act_func(•)

𝑎𝑖

Same as Inference:

Page 27

© Copyright 2017 Xilinx
.

Backpropagation: Backward Path

𝑊𝑖
𝑇

= 𝑔𝑖
Act_func’(•)

𝑔𝑖+1×

𝑊𝑖
𝑇 ∙ 𝑔𝑖+1

Pass gradients back

through network:

Page 28

© Copyright 2017 Xilinx
.

Backpropagation: Weight Update

Typically with an optimized

weight update:

– Stochastic gradient descent.

– Adam.

:= 𝑎𝑖𝑊𝑖 +𝑊𝑖
+ × 𝑔𝑖+1

𝑇

Page 29

© Copyright 2017 Xilinx
.

Page 30

Quantized Neural Networks

© Copyright 2017 Xilinx
.

Floating Point

– Usually 32-bits

– Large range, high precision

Fixed Point

– Fixed range

– Simpler hardware

Binarized

– Multiply-accumulate becomes XNOR-popcount

– 32x memory reduction

– Extreme performance possible on FPGAs

Page 31

Data Representations & Reduced Precision

© Copyright 2017 Xilinx
.

Training must be aware of quantization

• Direct quantization from FP -> RP tends to ruin

accuracy when going below 8 bits.

How to pass gradients through quantized

activation functions?

Key Training Challenges When Reducing Precision

Page 32

Source: https://arxiv.org/pdf/1511.06488.pdf

https://arxiv.org/pdf/1511.06488.pdf

© Copyright 2017 Xilinx
.

Q 𝑎𝑖

𝑊𝑖

=

Q 𝑊𝑖 ∙ Q 𝑎𝑖

𝑎𝑖+1

Act_func(•)

Q 𝑊𝑖 Q 𝑎𝑖+1

Quantization

Quantization-Aware Forward Path

×

On-the-fly quantization of weights

Quantizing activation function

𝑄 Act_func(•)

Page 33

© Copyright 2017 Xilinx
.

Quantization-Aware Backpropagation

𝑊𝑖
𝑇

𝑄 𝑊𝑖
𝑇

= 𝑔𝑖
Act_func’(•)

𝑔𝑖+1×

𝑄 𝑊𝑖
𝑇 ∙ 𝑔𝑖+1

Non-quantized gradients

Backpropagation based on quantized weights

Page 34

© Copyright 2017 Xilinx
.

Quantization-Aware Weight Update

Update real weights

:= 𝑄 𝑎𝑖𝑊𝑖 +𝑊𝑖
+ × 𝑔𝑖+1

𝑇

Page 35

© Copyright 2017 Xilinx
.

Differentiating the sign function:

– Choose an activation function, 𝑎,

which tends towards ±1 as x tends towards ±∞.

(The hard hyperbolic tangent function is a common, nice choice)

– Create a quantized activation function as the

composition 𝑎°𝑄: 𝑥 ⟼ 𝑄 𝑎 𝑥 .

– For the purpose of differentiation, pretend that the

quantization function 𝑄 had a gradient of 1 everywhere.

Clip gradients outside of range

(optional, but recommended).

Backpropagation with Quantized Activations

Page 36

© Copyright 2017 Xilinx
.

Quantizing ReLU

– Clip ReLU at the maximum value you want to

support.

– Create a quantized activation function as the

composition 𝑎°𝑄: 𝑥 ⟼ 𝑄 𝑎 𝑥 .

• Equal distance quantization over the specified range is a

good choice and ensures a local average gradient of 1.

– For the purpose of differentiation, pretend that the

quantization function 𝑄 had a gradient of 1

everywhere.

Clip gradients outside of range

(optional, but recommended).

Backpropagation with Quantized Activations

Page 37

© Copyright 2017 Xilinx
.

Improves convergence time, and

accuracy of RPNNs.

Fixed post-scaling gives full control over

output distribution parameters, e.g.:

𝛄 = 𝟏, 𝜷 = 𝟎 for 𝛍 = 𝟎, 𝝈ℬ
𝟐 = 𝟏

For extreme reduced precision, BN is free

at inference time.

For higher precisions, shift-based BN can

be used.

Batch Normalization

Page 38

Source: https://arxiv.org/pdf/1502.03167.pdf

https://arxiv.org/pdf/1502.03167.pdf

© Copyright 2017 Xilinx
.

Page 39

QNNs In Lasagne

© Copyright 2017 Xilinx
.

Lasagne (Theano)

– Supports binarized weights / activations

– Extended to support fixed-point data types

Tensorpack (TensorFlow)

– Supports reduced-precision weights / activations

Caffe

– C++ framework

– Supports binarized weights / activations

– Supports uniform and non-uniform quantization

Frameworks with Reduced Precision Training Support

Page 40

Darknet

– C-based NN library

– Supports binarized weights / activations

Torch

– Lua based

– Supports binarized weights / activations

– Supports shift-based Adam / batch

normalization

MXNet

– Supports binarized weights / activations

Popularity of reduced precision neural networks growing –

support in other frameworks will probably arrive soon!

© Copyright 2017 Xilinx
.

Python interface

– Easy integration with Numpy.

Automatic Differentiation

– Less code = fewer bugs!

CPU / GPU support

– Switch between CPU / GPU by simply setting an environment variable.

Extreme Flexibility

– Can implement any dataflow graph as a neural network.

Features of Lasagne

Page 41

© Copyright 2017 Xilinx
.

Full Installation Instructions Available on Github

Page 42

Source: https://github.com/Xilinx/BNN-PYNQ

Custom reduced

precision layers and

trainers

Topology definitions

Training scripts Weight packing

© Copyright 2017 Xilinx
.

LFC

– Input images: 28x28 pixels, binarized images

– Number of layers: 3 FC layers, 1024 neurons each

– Compute requirement: 5.8 MOps/Frame

CNV (VGG-16 derivative)

– Input images: 32x32 pixels, RGB image

– Number of layers: 2 (3x3) Conv + Max Pool +

2 (3x3) Conv + Max Pool + 2 Convolutional +

Max Pool + 3 FC

– Compute requirement: 1.23 GOps/Frame

Page 43

Test Networks

© Copyright 2017 Xilinx
.

BinaryNet in Lasagne – Training Script (mnist.py)

Page 44

from __future__ import print_function

import sys
import os
import time

import numpy as np
np.random.seed(1234) # for reproducibility

specifying the gpu to use
import theano.sandbox.cuda
theano.sandbox.cuda.use('gpu1')
import theano
import theano.tensor as T

import lasagne

import cPickle as pickle
import gzip

import binary_net
import lfc

from pylearn2.datasets.mnist import MNIST
from pylearn2.utils import serial

from collections import OrderedDict

if __name__ == "__main__":

learning_parameters = OrderedDict()
BN parameters
batch_size = 100
print("batch_size = "+str(batch_size))
alpha is the exponential moving average factor
alpha = .15
learning_parameters.alpha = .1
print("alpha = "+str(learning_parameters.alpha))
learning_parameters.epsilon = 1e-4
print("epsilon = "+str(learning_parameters.epsilon))

Training parameters
num_epochs = 1000
print("num_epochs = "+str(num_epochs))

Dropout parameters
learning_parameters.dropout_in = .2 # 0. means no dropout
print("dropout_in = "+str(learning_parameters.dropout_in))
learning_parameters.dropout_hidden = .5
print("dropout_hidden = "+str(learning_parameters.dropout_hidden))

W_LR_scale = 1.
learning_parameters.W_LR_scale = "Glorot" # "Glorot" means we are using the coefficients from Glorot's paper
print("W_LR_scale = "+str(learning_parameters.W_LR_scale))

Decaying LR
LR_start = .003
print("LR_start = "+str(LR_start))
LR_fin = 0.0000003
print("LR_fin = "+str(LR_fin))
LR_decay = (LR_fin/LR_start)**(1./num_epochs)
print("LR_decay = "+str(LR_decay))
BTW, LR decay might good for the BN moving average...

save_path = "mnist_parameters.npz"
print("save_path = "+str(save_path))

shuffle_parts = 1
print("shuffle_parts = "+str(shuffle_parts))

print('Loading MNIST dataset...')

train_set = MNIST(which_set= 'train', start=0, stop = 50000, center = False)
valid_set = MNIST(which_set= 'train', start=50000, stop = 60000, center = False)
test_set = MNIST(which_set= 'test', center = False)

bc01 format
Inputs in the range [-1,+1]
print("Inputs in the range [-1,+1]")
train_set.X = 2* train_set.X.reshape(-1, 1, 28, 28) - 1.
valid_set.X = 2* valid_set.X.reshape(-1, 1, 28, 28) - 1.
test_set.X = 2* test_set.X.reshape(-1, 1, 28, 28) - 1.

Binarise the inputs.
train_set.X = np.where(train_set.X < 0, -1, 1).astype(theano.config.floatX)
valid_set.X = np.where(valid_set.X < 0, -1, 1).astype(theano.config.floatX)
test_set.X = np.where(test_set.X < 0, -1, 1).astype(theano.config.floatX)

flatten targets
train_set.y = np.hstack(train_set.y)
valid_set.y = np.hstack(valid_set.y)
test_set.y = np.hstack(test_set.y)

Onehot the targets
train_set.y = np.float32(np.eye(10)[train_set.y])
valid_set.y = np.float32(np.eye(10)[valid_set.y])
test_set.y = np.float32(np.eye(10)[test_set.y])

for hinge loss
train_set.y = 2* train_set.y - 1.
valid_set.y = 2* valid_set.y - 1.
test_set.y = 2* test_set.y - 1.

print('Building the MLP...')

Prepare Theano variables for inputs and targets
input = T.tensor4('inputs')
target = T.matrix('targets')
LR = T.scalar('LR', dtype=theano.config.floatX)

mlp = lfc.genLfc(input, 10, learning_parameters)

train_output = lasagne.layers.get_output(mlp, deterministic=False)

squared hinge loss
loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output)))

W updates
W = lasagne.layers.get_all_params(mlp, binary=True)
W_grads = binary_net.compute_grads(loss,mlp)
updates = lasagne.updates.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
updates = binary_net.clipping_scaling(updates,mlp)

other parameters updates
params = lasagne.layers.get_all_params(mlp, trainable=True, binary=False)
updates = OrderedDict(updates.items() + lasagne.updates.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())

test_output = lasagne.layers.get_output(mlp, deterministic=True)
test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output)))
test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX)

Compile a function performing a training step on a mini-batch (by giving the updates dictionary)
and returning the corresponding training loss:
train_fn = theano.function([input, target, LR], loss, updates=updates)

Compile a second function computing the validation loss and accuracy:
val_fn = theano.function([input, target], [test_loss, test_err])

print('Training...')

binary_net.train(
train_fn,val_fn,
mlp,
batch_size,
LR_start,LR_decay,
num_epochs,
train_set.X,train_set.y,
valid_set.X,valid_set.y,
test_set.X,test_set.y,
save_path,
shuffle_parts)

~150 lines of code

Python library imports

Setting hyperparameters

Importing dataset

Constructing the topology

→ Changes require bitstream update.

Setting the loss function / network output

Training the network

© Copyright 2017 Xilinx
.

BinaryNet in Lasagne – Importing the Dataset

Page 45

print('Loading MNIST dataset...')

train_set = MNIST(which_set= 'train', start=0, stop = 50000, center = False)
valid_set = MNIST(which_set= 'train', start=50000, stop = 60000, center = False)
test_set = MNIST(which_set= 'test', center = False)

bc01 format
Inputs in the range [-1,+1]
print("Inputs in the range [-1,+1]")
train_set.X = 2* train_set.X.reshape(-1, 1, 28, 28) - 1.
valid_set.X = 2* valid_set.X.reshape(-1, 1, 28, 28) - 1.
test_set.X = 2* test_set.X.reshape(-1, 1, 28, 28) - 1.

Binarise the inputs.
train_set.X = np.where(train_set.X < 0, -1, 1).astype(theano.config.floatX)
valid_set.X = np.where(valid_set.X < 0, -1, 1).astype(theano.config.floatX)
test_set.X = np.where(test_set.X < 0, -1, 1).astype(theano.config.floatX)

flatten targets
train_set.y = np.hstack(train_set.y)
valid_set.y = np.hstack(valid_set.y)
test_set.y = np.hstack(test_set.y)

Onehot the targets
train_set.y = np.float32(np.eye(10)[train_set.y])
valid_set.y = np.float32(np.eye(10)[valid_set.y])
test_set.y = np.float32(np.eye(10)[test_set.y])

for hinge loss
train_set.y = 2* train_set.y - 1.
valid_set.y = 2* valid_set.y - 1.
test_set.y = 2* test_set.y - 1.

Import sets and separate into training,

validation and test sets – these are simply

numpy arrays!

– Rule of thumb:

60% training, 20% validation, 20% test.

– Beware of duplicates and data order.

Binarize input values (only required for LFC)

Convert labels into a 1D array of class

indices

1-hot encode the class labels

Modify result to match loss function

© Copyright 2017 Xilinx
.

BinaryNet in Lasagne – Constructing The Topology

Page 46

~60 lines of code

Configure global parameters

Construct the topology

import lasagne
import binary_net

def genLfc(input, num_outputs, learning_parameters):
A function to generate the lfc network topology which matches the overlay for the Pynq board.
WARNING: If you change this file, it's likely the resultant weights will not fit on the Pynq overlay.
if num_outputs < 1 or num_outputs > 64:

error("num_outputs should be in the range of 1 to 64.")
stochastic = False
binary = True
H = 1
num_units = 1024
n_hidden_layers = 3
activation = binary_net.binary_tanh_unit
W_LR_scale = learning_parameters.W_LR_scale
epsilon = learning_parameters.epsilon
alpha = learning_parameters.alpha
dropout_in = learning_parameters.dropout_in
dropout_hidden = learning_parameters.dropout_hidden

mlp = lasagne.layers.InputLayer(
shape=(None, 1, 28, 28),
input_var=input)

mlp = lasagne.layers.DropoutLayer(
mlp,
p=dropout_in)

for k in range(n_hidden_layers):

mlp = binary_net.DenseLayer(
mlp,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
nonlinearity=lasagne.nonlinearities.identity,
num_units=num_units)

mlp = lasagne.layers.BatchNormLayer(
mlp,
epsilon=epsilon,
alpha=alpha)

mlp = lasagne.layers.NonlinearityLayer(
mlp,
nonlinearity=activation)

mlp = lasagne.layers.DropoutLayer(
mlp,
p=dropout_hidden)

mlp = binary_net.DenseLayer(
mlp,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
nonlinearity=lasagne.nonlinearities.identity,
num_units=num_outputs)

mlp = lasagne.layers.BatchNormLayer(
mlp,
epsilon=epsilon,
alpha=alpha)

return mlp

Modifying the code here will mean the

weights may not work with the overlay!!

© Copyright 2017 Xilinx
.

k = 3, binary=true, stochastic=false, H=1, num_units=1024

for k in range(n_hidden_layers):

mlp = binary_net.DenseLayer(
mlp,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
nonlinearity=lasagne.nonlinearities.identity,
num_units=num_units)

mlp = lasagne.layers.BatchNormLayer(
mlp,
epsilon=epsilon,
alpha=alpha)

mlp = lasagne.layers.NonlinearityLayer(
mlp,
nonlinearity=binary_net.binary_tanh_unit)

mlp = lasagne.layers.DropoutLayer(
mlp,
p=dropout_hidden)

BinaryNet in Lasagne – Defining Layers

Page 47

Basic layer pattern: Dense (or Conv2D) ->

BatchNorm -> Activation -> Dropout

(optional)

Instantiate a layer with binary weights

Modifying the code here will mean the

weights may not work with the overlay!

Binarize activations

© Copyright 2017 Xilinx
.

Accuracy of Binary and Almost Binary Networks
Published Results

[1] Courbariaux, Matthieu, and Yoshua Bengio. "BinaryNet: Training deep neural networks with weights and activations constrained

to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).

[2] Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks." arXiv preprint

arXiv:1603.05279 (2016).

[3] Xundong Wu: High Performance Binarized Neural Networks trained on the ImageNet Classification Task” arXiv:1604.03058

[4] S. Zhou, z.Ni, X. Zhou, H.Wen, Y.Wu, Y. Zou: “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low

Bitwidth Gradients”, http://arxiv.org/abs/1606.06160#

Dataset FP32 BNN Source

MNIST 99% 99% [1]

SVHN 98% 97% [1]

CIFAR-10 92% 90% [1]

ImageNet (AlexNet arch) 80% top-5 69% top-5 [2]

ImageNet (ResNet-18 arch) 89% top-5 73% top-5 [2]

ImageNet (GoogleNet arch) 90% top-5 86% top-5 [2]

ImageNet (DoReFaNet) 56% top-1 50% top-1 [4] 2b activations

Page 48

• Similar accuracy on small networks and promising results for larger networks

© Copyright 2017 Xilinx
.

Binarized Neural Networks – Improving Accuracy

Page 49

Quantizing networks from floating point

to binary will introduce a drop in

accuracy.

Sometimes conversion of an existing

network will “just work”.

Often, hyperparameters or even the

network topology will have to change to

get good accuracy results.

Common methods to improve accuracy:

– Add batch normalization before activations.

– Reduce learning rate.

– Increase number of epochs.

– Increase the size of the network:

• Larger layers,

• Deeper network (more layers).

© Copyright 2017 Xilinx
.

Summary

Page 50

Combining quantized neural networks & FPGAs allows opportunities to create

extreme high-throughput, low-power neural networks.

There is some drop in accuracy compared to floating point accuracy.

This is typically compensated by re-training and increasing the size of the network.

Pynq + Lasagne – great platforms to get started training and implementing your own

high-performance neural networks.

© Copyright 2017 Xilinx
.

Hands-On Opportunities

Page 51

GPU support for training helps a lot, AWS EC2 might help out.

Checkout open-source QNN examples with trained models and Jupyter notebooks

for Pynq-Z1 at http://www.pynq.io/community.html:

– Xilinx/BNN-PYNQ - LFC, CNV: CIFAR10, MNIST, Road Signs, …

– Xilinx/QNN-MO-PYNQ - TinierYolo, DorefaNet: Object Detection, ImageNet Classification

– tukl-msd/LSTM-PYNQ - LSTM: OCR for Fraktur text

Expect the QNN story to unfold for more platforms:

– Support for more boards.

– AWS F1 solution.

See the XILINX booth!

http://www.pynq.io/community.html

© Copyright 2017 Xilinx
.

Page 52

Thank You.

