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Part of the CTO organization

– 9 (out of 35 worldwide) researchers

With a very active internship program

– 6-10 students & visiting scholars

Visiting professors on sabbatical

Postdoc on Marie-Curie Fellowship

Xilinx Research - Ireland
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Demonstrated to work well for numerous use cases

New York Times: “The Great A.I. Awakening”
(Dec 2016)

Drones Can Defeat Humans Using 

Artificial Intelligence

Elon Musk’s Billion-Dollar AI Plan 

Is About Far More Than Saving the World
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NNs are the predominant AI algorithm

– Can outperform humans and traditional CV algorithms for image 

recognition

NNs have the theoretical property of being a “universal 

approximation function” 

– Empirically outperforming other approximator functions
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Neural Networks

Increasing adoption: replacing other solutions and for previously unsolved 

problems
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Training

Process for a machine to learn by 

optimizing models (weights) from data.

➢ Requires little expertise/specialization 

in the actual target domain.

Inference

Using trained models to predict or 

estimate outcomes from new 

observations.

Neural Networks: Training vs Inference
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Challenges: Wide & Increasing Range of Applications
ADAS

Hearing Aids

Translation 

Service

Real-Time, 

Sensor-Based 

Control

Medical 

Diagnoses

3D Reconstruction 

from Drone Images

Recommender 

Systems

Health 

Assistance
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Challenges: Different Figures of Merits

Real-time systems have clearly defined 

throughput and latency constraints.
Embedded Systems: heavily power constrained

Data Centers: OPEX = f(energy)

Accuracy requirements vary with 

applications:

Recommender systems, data 

analytics vs ADAS.

Reduced latency: Results in 

a better user experience in 

cloud-based systems 

(Google defines 7ms) and 

vital for robotics.
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The predominant CNN computation is linear algebra 

– Demands lots of (simple) computation and lots of parameters (memory)

• AlexNet: 244 MB & 1.5 GOPS, VGG16: 552 MB & 30.8 GOPS; GoogleNet: 41.9 MB & 3.0 GOPS for ImageNet
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Challenges: Highly Compute and Memory Intensive

«cat»

Output(w,h,m) += 

input(w+x,h+y,d)*filter(m,

x,y,d);

Challenge 2:

billions of multiply-accumulate ops & tens of megabytes of parameter data
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Challenges: Neural Networks Will Continue to Change

AlexNet (2012)

GoogleNet (2014)

DenseNet (2016)

Number and types of 

layers are changing

Graph Connectivity

is changing

Data representations and 

quantization methods

are changing

Challenge:

Continuous stream of new algorithms
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Each combination yields a different point in the design space:

error, cost, throughput, latency, power
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Challenge: Multidimensional Design Space

ML task (growing list)
• Vision: image classification, 

recognition, semantic 

segmentation, SLAM

• Audio: voice control, noise filtering

• Gaming strategy

• Recommender systems

Neural Network 

topology
• AlexNet, GoogleNet, 

ResNet-X, Enet, Yolo

Training data sets
• ImageNet, COCO, 

VOC, GTSRB, 

MNIST, CIFAR-10, 

GSVHN, Cityscapes, 

KITTY

Training framework
• Mxnet, Caffe, 

Tensorflow, Theano, 

Darknet

Compute & data types
• Numerical representation & 

precision, quantization 

functions, activation 

functions, non-linearity

Hyperparameters
Learning rates,  regularization 

scheme, cost function, 

optimization scheme, pre/post 

processing

Architecture
Dataflow, systolic array, 

compression engines, sparse 

representations

End Device

Trained Neural Network

Trained Neural Network
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Opportunity: Customized Neural Networks

hardware cost/ performance/ power

e
rr

o
r

Design and training of FPGA-friendly neural networks that provide end-solutions that 

are high-performance and more power-efficient than any other hardware

– Hardware cost, power, performance, latency
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Opportunity: Customized ML Processor Datapath

IFM buffers

Weights, 

Thresholds Weights, Thresholds

PL, DSPs

Generality vs Performance

Latency vs Resources

Latency vs generality
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Cost per operation is greatly reduced

Memory cost is greatly reduced

– Large networks can fit entirely into on-chip memory (OCM) (UltraRAM, BRAM)

Today’s FPGAs have a much higher peak performance for reduced precision operations

Focus: Reduced Precision - Quantization
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Precision Cost per Op

LUT

Cost per Op

DSP

MB 

needed

(AlexNet)

TOps/s 

(KU115)*

TOps/s

(VU9P)**

TOps/s 

(ZU19EG)*

1b 2.5 0 7.6 ~46 ~100 ~66

4b 16 0 30.5 ~11 ~15 ~16

8b 45 0 61 ~3 ~6 ~4

16b 15 0.5 122 ~1 ~4 ~1

32b 178 2 244 ~0.5 ~1 ~0.3

100x

*Assumptions: Application can fill device to 70% (fully parallelizable) 250MHZ

**Assumptions: Application can fill device to 70% (fully parallelizable) 300MHZ
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Quantizing and Fixed Point saves Power

Source: Bill Dally (Stanford), Cadence Embedded Neural 

Network Summit, February 1, 2017
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Just reducing precision, 

reduce hardware cost & 

increases error

Recuperate accuracy by 

retraining & increasing 

network size

1b, 2b and 4b provide 

pareto optimal solutions

Do we loose Accuracy?
Compensating Quantization with Network Complexity

• Intel: Wide Reduced Precision Networks 

https://arxiv.org/pdf/1709.01134.pdf

Page 15

https://arxiv.org/pdf/1709.01134.pdf
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Accuracy of Quantized Neural Networks (QNNs) Improving
Published Results for FP CNNs, QNNs and binarized NNs (BNNs)
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• Accuracy results are improving rapidly through for example new training techniques, topological 

changes and other methods
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Quantized Neural Networks provide the opportunity to create hardware 

implementations that are faster, smaller, or more power-efficient.

Page 17

Summary
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Introduction to Neural Networks:

– Neural network layers

– The backpropagation algorithm

Quantized Neural Networks

– Data representations

– Binarized Neural Networks

– Quantization-aware backpropagation

Training Binary Neural Networks in Lasagne

Agenda

Page 18
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Neural Networks: A Quick Introduction
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Neural networks are computational 

graphs constructed from one or more 

layers.

Layers: Usually linear operations 

followed by a non-linear activation 

function

– Dot product = fully connected layer

– 2D convolution = convolutional layer

Other common layers:

– Pooling layers (Max / Average)

– Batch normalization

Page 20

Neural Networks - Layers
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Also known as: inner product layer or 

dense layer.

Each neuron is connected to every 

neuron of the previous layer.

A weight is associated with each 

“synapse”.

Can be written as a matrix-vector 

product with an element-wise non-

linearity applied afterwards.

Page 21

Neural Networks – Fully Connected Layer

𝑊𝑖 =×

𝑊𝑖 ∙ 𝑎𝑖

𝑎𝑖+1
Act_func(•)

𝑎𝑖
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Each neuron applies a convolution to 

all images in the previous layer.

Weights represent the filters used for 

convolutions.

Can be lowered to a matrix-matrix 

multiply.

Non-linear activation applied to each 

output pixel.

Page 22

Neural Networks – Convolutional Layer

Source: http://cs231n.github.io/assets/conv-demo/index.html
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Most popular: the rectified linear unit 

(ReLU)

Other common ones include: tanh, 

leaky ReLU.

For binarized neural networks, the 

step function is often used.

Page 23

Neural Networks – Activation Functions

Source: http://cs231n.github.io/neural-networks-1/
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Crude downsamplers of images.

Reduces compute in subsequent 

layers.

Max pooling takes the maximum 

value from a window of pixels.

Average pooling is another common 

type.

Page 24

Neural Networks – Pooling Layer

Source: http://cs231n.github.io/convolutional-networks/
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Normalizes the statistics of activation values of 

particular neurons.

Adds post-scaling to allow some neurons to be 

“more important” than others.

Significantly reduces the training time of 

networks.

Can improve the accuracy.

Batch Normalization Layer

Page 25
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Training Neural Networks - Backpropagation

Layer 0
Layer 1

Layer 2
Layer N-1

…Training 
Input
Data set

Outputs
Loss

computationGrad. N

Optional 
Pre-

processor / 
dataset 

augmenter

Purpose: calculate the gradients associated with each weight within a network.

Forward path is the same as inference.

Gradients calculated from a semi-differentiable loss function.

Gradients passed back and transformed layer-by-layer.

Weights updated from the provided gradients, input activations and an optimization algorithm.

Page 26
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Backpropagation: Forward Path

𝑊𝑖 =×

𝑊𝑖 ∙ 𝑎𝑖

𝑎𝑖+1
Act_func(•)

𝑎𝑖

Same as Inference:

Page 27
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Backpropagation: Backward Path

𝑊𝑖
𝑇

= 𝑔𝑖
Act_func’(•)

𝑔𝑖+1×

𝑊𝑖
𝑇 ∙ 𝑔𝑖+1

Pass gradients back

through network:

Page 28



© Copyright 2017 Xilinx
.

Backpropagation: Weight Update

Typically with an optimized 

weight update:

– Stochastic gradient descent.

– Adam.

:= 𝑎𝑖𝑊𝑖 +𝑊𝑖
+ × 𝑔𝑖+1

𝑇

Page 29
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Quantized Neural Networks
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Floating Point

– Usually 32-bits

– Large range, high precision

Fixed Point

– Fixed range

– Simpler hardware

Binarized

– Multiply-accumulate becomes XNOR-popcount

– 32x memory reduction

– Extreme performance possible on FPGAs

Page 31

Data Representations & Reduced Precision
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Training must be aware of quantization

• Direct quantization from FP -> RP tends to ruin 

accuracy when going below 8 bits.

How to pass gradients through quantized 

activation functions?

Key Training Challenges When Reducing Precision

Page 32

Source: https://arxiv.org/pdf/1511.06488.pdf

https://arxiv.org/pdf/1511.06488.pdf
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Q 𝑎𝑖

𝑊𝑖

=

Q 𝑊𝑖 ∙ Q 𝑎𝑖

𝑎𝑖+1

Act_func(•)

Q 𝑊𝑖 Q 𝑎𝑖+1

Quantization

Quantization-Aware Forward Path

×

On-the-fly quantization of weights

Quantizing activation function

𝑄 Act_func(•)

Page 33
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Quantization-Aware Backpropagation

𝑊𝑖
𝑇

𝑄 𝑊𝑖
𝑇

= 𝑔𝑖
Act_func’(•)

𝑔𝑖+1×

𝑄 𝑊𝑖
𝑇 ∙ 𝑔𝑖+1

Non-quantized gradients

Backpropagation based on quantized weights

Page 34
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Quantization-Aware Weight Update

Update real weights

:= 𝑄 𝑎𝑖𝑊𝑖 +𝑊𝑖
+ × 𝑔𝑖+1

𝑇

Page 35
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Differentiating the sign function:

– Choose an activation function, 𝑎,

which tends towards ±1 as x tends towards ±∞.

(The hard hyperbolic tangent function is a common, nice choice)

– Create a quantized activation function as the 

composition 𝑎°𝑄: 𝑥 ⟼ 𝑄 𝑎 𝑥 .

– For the purpose of differentiation, pretend that the 

quantization function 𝑄 had a gradient of 1 everywhere.

Clip gradients outside of range

(optional, but recommended).

Backpropagation with Quantized Activations

Page 36
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Quantizing ReLU

– Clip ReLU at the maximum value you want to 

support.

– Create a quantized activation function as the 

composition 𝑎°𝑄: 𝑥 ⟼ 𝑄 𝑎 𝑥 .

• Equal distance quantization over the specified range is a 

good choice and ensures a local average gradient of 1.

– For the purpose of differentiation, pretend that the 

quantization function 𝑄 had a gradient of 1

everywhere.

Clip gradients outside of range

(optional, but recommended).

Backpropagation with Quantized Activations

Page 37
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Improves convergence time, and 

accuracy of RPNNs.

Fixed post-scaling gives full control over 

output distribution parameters, e.g.:

𝛄 = 𝟏, 𝜷 = 𝟎 for 𝛍 = 𝟎, 𝝈ℬ
𝟐 = 𝟏

For extreme reduced precision, BN is free 

at inference time.

For higher precisions, shift-based BN can 

be used.

Batch Normalization

Page 38

Source: https://arxiv.org/pdf/1502.03167.pdf

https://arxiv.org/pdf/1502.03167.pdf
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QNNs In Lasagne
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Lasagne (Theano)

– Supports binarized weights / activations

– Extended to support fixed-point data types

Tensorpack (TensorFlow)

– Supports reduced-precision weights / activations

Caffe

– C++ framework

– Supports binarized weights / activations

– Supports uniform and non-uniform quantization

Frameworks with Reduced Precision Training Support

Page 40

Darknet

– C-based NN library

– Supports binarized weights / activations

Torch

– Lua based

– Supports binarized weights / activations

– Supports shift-based Adam / batch 

normalization

MXNet

– Supports binarized weights / activations

Popularity of reduced precision neural networks growing –

support in other frameworks will probably arrive soon!
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Python interface

– Easy integration with Numpy.

Automatic Differentiation

– Less code = fewer bugs!

CPU / GPU support

– Switch between CPU / GPU by simply setting an environment variable.

Extreme Flexibility

– Can implement any dataflow graph as a neural network.

Features of Lasagne

Page 41
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Full Installation Instructions Available on Github

Page 42

Source: https://github.com/Xilinx/BNN-PYNQ

Custom reduced 

precision layers and 

trainers

Topology definitions

Training scripts Weight packing
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LFC

– Input images: 28x28 pixels, binarized images

– Number of layers: 3 FC layers, 1024 neurons each

– Compute requirement: 5.8 MOps/Frame 

CNV (VGG-16 derivative)

– Input images: 32x32 pixels, RGB image

– Number of layers: 2 (3x3) Conv + Max Pool + 

2 (3x3) Conv + Max Pool + 2 Convolutional + 

Max Pool + 3 FC 

– Compute requirement: 1.23 GOps/Frame

Page 43

Test Networks
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BinaryNet in Lasagne – Training Script (mnist.py)

Page 44

from __future__ import print_function

import sys
import os
import time

import numpy as np
np.random.seed(1234) # for reproducibility

# specifying the gpu to use
# import theano.sandbox.cuda
# theano.sandbox.cuda.use('gpu1')
import theano
import theano.tensor as T

import lasagne

import cPickle as pickle
import gzip

import binary_net
import lfc

from pylearn2.datasets.mnist import MNIST
from pylearn2.utils import serial

from collections import OrderedDict

if __name__ == "__main__":

learning_parameters = OrderedDict()
# BN parameters
batch_size = 100
print("batch_size = "+str(batch_size))
# alpha is the exponential moving average factor
# alpha = .15
learning_parameters.alpha = .1
print("alpha = "+str(learning_parameters.alpha))
learning_parameters.epsilon = 1e-4
print("epsilon = "+str(learning_parameters.epsilon))

# Training parameters
num_epochs = 1000
print("num_epochs = "+str(num_epochs))

# Dropout parameters
learning_parameters.dropout_in = .2 # 0. means no dropout
print("dropout_in = "+str(learning_parameters.dropout_in))
learning_parameters.dropout_hidden = .5
print("dropout_hidden = "+str(learning_parameters.dropout_hidden))

# W_LR_scale = 1.
learning_parameters.W_LR_scale = "Glorot" # "Glorot" means we are using the coefficients from Glorot's paper
print("W_LR_scale = "+str(learning_parameters.W_LR_scale))

# Decaying LR
LR_start = .003
print("LR_start = "+str(LR_start))
LR_fin = 0.0000003
print("LR_fin = "+str(LR_fin))
LR_decay = (LR_fin/LR_start)**(1./num_epochs)
print("LR_decay = "+str(LR_decay))
# BTW, LR decay might good for the BN moving average...

save_path = "mnist_parameters.npz"
print("save_path = "+str(save_path))

shuffle_parts = 1
print("shuffle_parts = "+str(shuffle_parts))

print('Loading MNIST dataset...')

train_set = MNIST(which_set= 'train', start=0, stop = 50000, center = False)
valid_set = MNIST(which_set= 'train', start=50000, stop = 60000, center = False)
test_set = MNIST(which_set= 'test', center = False)

# bc01 format
# Inputs in the range [-1,+1]
# print("Inputs in the range [-1,+1]")
train_set.X = 2* train_set.X.reshape(-1, 1, 28, 28) - 1.
valid_set.X = 2* valid_set.X.reshape(-1, 1, 28, 28) - 1.
test_set.X = 2* test_set.X.reshape(-1, 1, 28, 28) - 1.

# Binarise the inputs.
train_set.X = np.where(train_set.X < 0, -1, 1).astype(theano.config.floatX)
valid_set.X = np.where(valid_set.X < 0, -1, 1).astype(theano.config.floatX)
test_set.X = np.where(test_set.X < 0, -1, 1).astype(theano.config.floatX)

# flatten targets
train_set.y = np.hstack(train_set.y)
valid_set.y = np.hstack(valid_set.y)
test_set.y = np.hstack(test_set.y)

# Onehot the targets
train_set.y = np.float32(np.eye(10)[train_set.y])
valid_set.y = np.float32(np.eye(10)[valid_set.y])
test_set.y = np.float32(np.eye(10)[test_set.y])

# for hinge loss
train_set.y = 2* train_set.y - 1.
valid_set.y = 2* valid_set.y - 1.
test_set.y = 2* test_set.y - 1.

print('Building the MLP...')

# Prepare Theano variables for inputs and targets
input = T.tensor4('inputs')
target = T.matrix('targets')
LR = T.scalar('LR', dtype=theano.config.floatX)

mlp = lfc.genLfc(input, 10, learning_parameters)

train_output = lasagne.layers.get_output(mlp, deterministic=False)

# squared hinge loss
loss = T.mean(T.sqr(T.maximum(0.,1.-target*train_output)))

# W updates
W = lasagne.layers.get_all_params(mlp, binary=True)
W_grads = binary_net.compute_grads(loss,mlp)
updates = lasagne.updates.adam(loss_or_grads=W_grads, params=W, learning_rate=LR)
updates = binary_net.clipping_scaling(updates,mlp)

# other parameters updates
params = lasagne.layers.get_all_params(mlp, trainable=True, binary=False)
updates = OrderedDict(updates.items() + lasagne.updates.adam(loss_or_grads=loss, params=params, learning_rate=LR).items())

test_output = lasagne.layers.get_output(mlp, deterministic=True)
test_loss = T.mean(T.sqr(T.maximum(0.,1.-target*test_output)))
test_err = T.mean(T.neq(T.argmax(test_output, axis=1), T.argmax(target, axis=1)),dtype=theano.config.floatX)

# Compile a function performing a training step on a mini-batch (by giving the updates dictionary)
# and returning the corresponding training loss:
train_fn = theano.function([input, target, LR], loss, updates=updates)

# Compile a second function computing the validation loss and accuracy:
val_fn = theano.function([input, target], [test_loss, test_err])

print('Training...')

binary_net.train(
train_fn,val_fn,
mlp,
batch_size,
LR_start,LR_decay,
num_epochs,
train_set.X,train_set.y,
valid_set.X,valid_set.y,
test_set.X,test_set.y,
save_path,
shuffle_parts)

~150 lines of code

Python library imports

Setting hyperparameters

Importing dataset

Constructing the topology

→ Changes require bitstream update.

Setting the loss function / network output

Training the network
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BinaryNet in Lasagne – Importing the Dataset

Page 45

print('Loading MNIST dataset...')

train_set = MNIST(which_set= 'train', start=0, stop = 50000, center = False)
valid_set = MNIST(which_set= 'train', start=50000, stop = 60000, center = False)
test_set = MNIST(which_set= 'test', center = False)

# bc01 format
# Inputs in the range [-1,+1]
# print("Inputs in the range [-1,+1]")
train_set.X = 2* train_set.X.reshape(-1, 1, 28, 28) - 1.
valid_set.X = 2* valid_set.X.reshape(-1, 1, 28, 28) - 1.
test_set.X = 2* test_set.X.reshape(-1, 1, 28, 28) - 1.

# Binarise the inputs.
train_set.X = np.where(train_set.X < 0, -1, 1).astype(theano.config.floatX)
valid_set.X = np.where(valid_set.X < 0, -1, 1).astype(theano.config.floatX)
test_set.X = np.where(test_set.X < 0, -1, 1).astype(theano.config.floatX)

# flatten targets
train_set.y = np.hstack(train_set.y)
valid_set.y = np.hstack(valid_set.y)
test_set.y = np.hstack(test_set.y)

# Onehot the targets
train_set.y = np.float32(np.eye(10)[train_set.y])
valid_set.y = np.float32(np.eye(10)[valid_set.y])
test_set.y = np.float32(np.eye(10)[test_set.y])

# for hinge loss
train_set.y = 2* train_set.y - 1.
valid_set.y = 2* valid_set.y - 1.
test_set.y = 2* test_set.y - 1.

Import sets and separate into training, 

validation and test sets – these are simply 

numpy arrays!

– Rule of thumb:

60% training, 20% validation, 20% test.

– Beware of duplicates and data order.

Binarize input values (only required for LFC)

Convert labels into a 1D array of class 

indices

1-hot encode the class labels

Modify result to match loss function
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BinaryNet in Lasagne – Constructing The Topology

Page 46

~60 lines of code

Configure global parameters

Construct the topology

import lasagne
import binary_net

def genLfc(input, num_outputs, learning_parameters):
# A function to generate the lfc network topology which matches the overlay for the Pynq board.
# WARNING: If you change this file, it's likely the resultant weights will not fit on the Pynq overlay.
if num_outputs < 1 or num_outputs > 64:

error("num_outputs should be in the range of 1 to 64.")
stochastic = False
binary = True
H = 1
num_units = 1024
n_hidden_layers = 3
activation = binary_net.binary_tanh_unit
W_LR_scale = learning_parameters.W_LR_scale
epsilon = learning_parameters.epsilon
alpha = learning_parameters.alpha
dropout_in = learning_parameters.dropout_in
dropout_hidden = learning_parameters.dropout_hidden

mlp = lasagne.layers.InputLayer(
shape=(None, 1, 28, 28),
input_var=input)

mlp = lasagne.layers.DropoutLayer(
mlp,
p=dropout_in)

for k in range(n_hidden_layers):

mlp = binary_net.DenseLayer(
mlp,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
nonlinearity=lasagne.nonlinearities.identity,
num_units=num_units)

mlp = lasagne.layers.BatchNormLayer(
mlp,
epsilon=epsilon,
alpha=alpha)

mlp = lasagne.layers.NonlinearityLayer(
mlp,
nonlinearity=activation)

mlp = lasagne.layers.DropoutLayer(
mlp,
p=dropout_hidden)

mlp = binary_net.DenseLayer(
mlp,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
nonlinearity=lasagne.nonlinearities.identity,
num_units=num_outputs)

mlp = lasagne.layers.BatchNormLayer(
mlp,
epsilon=epsilon,
alpha=alpha)

return mlp

Modifying the code here will mean the 

weights may not work with the overlay!!
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# k = 3, binary=true, stochastic=false, H=1, num_units=1024

for k in range(n_hidden_layers):

mlp = binary_net.DenseLayer(
mlp,
binary=binary,
stochastic=stochastic,
H=H,
W_LR_scale=W_LR_scale,
nonlinearity=lasagne.nonlinearities.identity,
num_units=num_units)

mlp = lasagne.layers.BatchNormLayer(
mlp,
epsilon=epsilon,
alpha=alpha)

mlp = lasagne.layers.NonlinearityLayer(
mlp,
nonlinearity=binary_net.binary_tanh_unit)

mlp = lasagne.layers.DropoutLayer(
mlp,
p=dropout_hidden)

BinaryNet in Lasagne – Defining Layers
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Basic layer pattern: Dense (or Conv2D) -> 

BatchNorm -> Activation -> Dropout 

(optional)

Instantiate a layer with binary weights

Modifying the code here will mean the 

weights may not work with the overlay!

Binarize activations
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Accuracy of Binary and Almost Binary Networks
Published Results

[1] Courbariaux, Matthieu, and Yoshua Bengio. "BinaryNet: Training deep neural networks with weights and activations constrained 

to+ 1 or-1." arXiv preprint arXiv:1602.02830 (2016).

[2] Rastegari, Mohammad, et al. "XNOR-Net: ImageNet Classification Using Binary Convolutional Neural Networks." arXiv preprint 

arXiv:1603.05279 (2016).

[3] Xundong Wu: High Performance Binarized Neural Networks trained on the ImageNet Classification Task” arXiv:1604.03058 

[4] S. Zhou, z.Ni, X. Zhou, H.Wen, Y.Wu, Y. Zou: “DoReFa-Net: Training Low Bitwidth Convolutional Neural Networks with Low 

Bitwidth Gradients”, http://arxiv.org/abs/1606.06160#

Dataset FP32 BNN Source

MNIST 99% 99% [1]

SVHN 98% 97% [1]

CIFAR-10 92% 90% [1]

ImageNet (AlexNet arch) 80% top-5 69% top-5 [2]

ImageNet (ResNet-18 arch) 89% top-5 73% top-5 [2]

ImageNet (GoogleNet arch) 90% top-5 86% top-5 [2]

ImageNet (DoReFaNet) 56% top-1 50% top-1 [4] 2b activations

Page 48

• Similar accuracy on small networks and promising results for larger networks 
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Binarized Neural Networks – Improving Accuracy
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Quantizing networks from floating point 

to binary will introduce a drop in 

accuracy.

Sometimes conversion of an existing 

network will “just work”.

Often, hyperparameters or even the 

network topology will have to change to 

get good accuracy results.

Common methods to improve accuracy:

– Add batch normalization before activations.

– Reduce learning rate.

– Increase number of epochs.

– Increase the size of the network:

• Larger layers,

• Deeper network (more layers).
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Summary
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Combining quantized neural networks & FPGAs allows opportunities to create 

extreme high-throughput, low-power neural networks.

There is some drop in accuracy compared to floating point accuracy.

This is typically compensated by re-training and increasing the size of the network.

Pynq + Lasagne – great platforms to get started training and implementing your own 

high-performance neural networks.
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Hands-On Opportunities
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GPU support for training helps a lot, AWS EC2 might help out. 

Checkout open-source QNN examples with trained models and Jupyter notebooks 

for Pynq-Z1 at http://www.pynq.io/community.html:

– Xilinx/BNN-PYNQ - LFC, CNV: CIFAR10, MNIST, Road Signs, …

– Xilinx/QNN-MO-PYNQ - TinierYolo, DorefaNet: Object Detection, ImageNet Classification

– tukl-msd/LSTM-PYNQ - LSTM: OCR for Fraktur text

Expect the QNN story to unfold for more platforms:

– Support for more boards.

– AWS F1 solution.

See the XILINX booth! 

http://www.pynq.io/community.html
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Thank You.


