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Xilinx Research - Ireland

Since 13 years

Part of the worldwide CTO organization (8 out of 36)

AI Lab expansion part-financed through

Ivo Bolsens

CTO

Kees Vissers

Fellow
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Current Xlabs Dublin Team

Lucian Petrica, Giulio Gambardella, Alessandro Pappalardo, Ken O’Brien, 
me, Nick Fraser, Yaman Umuroglu, Peter Ogden (from left to right)

Plus 2 in Xilinx University Program 
(Cathal McCabe, Katy Hurley)
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Plus a Very Active Internship Program

˃ On average 4-6 interns at any given time

From top universities all over the world

We are always looking for talent ;-)

˃ Overall

67 interns since 2007

Many collaborations have come from this

Many found employment
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Machine Learning, 

Neural Networks & its Challenges
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The Rise of The Machine (Learning Algorithms)

˃ Potential to solve the unsolved problems

Making solar energy economical, reverse engineering the brain (Jeff Dean, Google Brain 2017)

˃ Many difficult ethical questions

Will machines destroy jobs? AI apocalypse?

˃ History has shown: We are going through cycles of inventions followed by society adjustments

All of this has happened before and will happen again (Battlestar Galactica, 2014)

˃ Let’s look at what the technology can do, and how we FPGA designers & computer architects 

broaden its adoption

1. 2. 3. 4.
1800 1900 2000

Mechanical
Steam powered 

mechanical 
production

Electrical
Mass production 

with electrical 
energy

Digital
Automated 
production

Virtual
Machine Learning
Industrial Internet
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A.I. – Machine Learning - Neural Networks 

Artificial Intelligence (A.I.)

Computer Vision Pattern Recognition Machine Learning Cognitive Robotics . . .

Linear Regression K-Means Clustering Decision TreesNeural Networks . . .

“machine mimics cognitive  
functions such as learning and 

problem solving” 

“Predominantly used ML algorithm
Mimics the human brain”

“Gives computers the ability to 
learn without being explicitly 

programmed”

>> 8
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Convolutional Neural Networks (CNNs)
from a computational point of view

˃ CNNs are usually feed forward* computational 

graphs constructed from one or more layers

Up to 1000s of layers

˃ Each layer consists of neurons ni which are 

interconnected with synapses, associated with 

weights wij

˃ Each neuron computes: 

Typically linear transform (dot-product of receptive field)

Followed by a non-linear “activation” function
Layer

L0
Layer

L1
Layer

L2

Weights
W2

Weights
W1

Weights
W0

Inputs Outputs

i0

i1

w00

w12

n0

n1

n2

n0 = Act(w00*i0 + w10*i1)

Synapse with weight wji

Neuron ni
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* With exception of RNNs
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Convolutional Neural Networks (CNNs)
Why are they so popular?

˃ Requires little or no domain expertise

˃ NNs are a “universal approximation function”

˃ If you make it big enough and train it enough

Can outperform humans on specific tasks

˃ Will increasingly replace other 

algorithms

unless for example simple rules can 
describe the problem

˃ Solve problems previously 

unsolved by computers

˃ And solve completely unsolved 

problems

>> 10
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Training

Process for a machine to learn by 

optimizing models (weights) from labeled 

data.

Typically computed in the cloud

Inference

Using trained models to predict or 

estimate outcomes from new inputs.

Deployment at the edge

From Training to Inference

“dog”
“dog”

“dog”
“dog”

“dog”

Training 
dataset labels

“dog”

Trained weights
(model)
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What is the 
Challenge?
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Input Image

Example: ResNet50 
Backpropagation – 1 Image

Neural Network Result Label

Dog!!!

errorWeight
Updates
error

Weight
Updateserror

Weight
Updates

For ResNet50: 
23 Billion operations
weights, weight gradients, updates:  303MBytes of storage (3-5x)
activations, gradients: 80 MBytes

*Assuming 32b SP

WeightsWeightsWeights

Cat?

>> 13
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Input Image

Example: ResNet50
Training – 1.2 Million Images for 1 epoch

Neural Network Result Label

Weight
Updates

Weight
Updates

Weight
Updates

For ResNet50: 1 epoch takes 1.2M * 23 Billion operations = 23 * 1015 operations (peta)

WeightsWeightsWeights

Dog!!!Cat?

>> 14
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Example: ResNet50 
Training – Approximately 100 Epochs

For ResNet50: 100 * 23 1015 = 2.3 * 1018 (exa)
Single P40 GPU (12TFLOPS): 11days @ 100%, usually ~2 weeks

>> 15

ResNet50:
• For inference: Billions of operations, and 10s of MegaBytes
• For training: Quintillions/Exa of operations, and 100s of MegaBytes
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Challenge 1

˃ Huge amount of compute and memory

˃ While compute performance is no longer scaling and becomes more expensive
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What else?
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Many Applications Require Different Networks
ADAS

Hearing Aids

Translation 

Service Real-time, 

sensor-based-

control Medical 

Diagnoses

3D reconstruction from 

drone images

Recommender 

Systems

Gaming 

strategy

Data 

Analysis for 

Healthcare

Optical Char. 

Recognition
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Challenge 2: Inference Compute and Memory
Variation Across a Spectrum of Neural Networks

Inference (1 input)
GOPS

average

Inference (1 input)
MBytes

average

Spectrum of Neural Networks

MLP ImageNet Classification CNNs
Object 

Detection
Semantic 

Segmentation
OCR

Speech 
Recognition

*architecture independent
**1 image forward 
*** batch = 1
**** int8

Huge Variation in Compute and Memory  Requirements, even 
within subgroups

>> 19
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Anything else?
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Challenge 3:
Different Use Cases, Different Design Targets
Accuracy, speed, power, latency, cost

˃ ADAS: 

Accuracy

High throughput

˃ Hearing aids: 

Low power

Very low latency

Low throughput

˃ AR

High throughput

Low latency

Low power

˃ 3D reconstruction of 

HR images

High throughput

Offline
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Finally,…



© Copyright 2018 Xilinx

Challenge 4:
Neural Networks Change @ Increasing Rate

˃ Graph connectivity, number and types of layers are changing

˃ Increasing stream of research

Ce Zhang, ETH Zurich, Systems Retreat 2018
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In Summary: CNNs are associated with…

˃ Significant amounts of memory and computation

˃ Huge variation between topologies and within them

˃ Broad spectrum of applications with different design targets

˃ Fast changing algorithms

˃ However, incredibly parallel! 
For convolutions: filter dimensions, feature map dimensions, input & output channels, batches, 
layers, and even precisions

>> 24
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Architectural Challenges/ Pain Points

>> 25

NN Inference/ Training Accelerator

Input samples

DRAM

Results

Activation Functions/ Pooling…

Weight Buffer

DMA

Input & 
Activation
Buffering Compute Array

Huge amount of memory
spilling into DRAM

And variations

Weight & activation 
fetching: bandwidth 

throttles performance

Power consumption for 
embedded

Latency in real-time 
processing

Partial Sums

Huge amount of compute and variation-
Limited scalability with new technology nodes

Requires algorithmic & architectural innovation
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Algorithmic Optimization Techniques

>> 26
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Optimization Techniques
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Loop transformations to minimize memory access*

Pruning

Compression

Winograd, Strassen and FFT

Novel layer types (squeeze, shuffle, shift)

Numerical Representations & Reducing Precision

*Chen, Y.H., Krishna, T., Emer, J.S. and Sze, V., 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep 
convolutional neural networks. IEEE Journal of Solid-State Circuits, 52(1), pp.127-13
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Example: Reducing Bit-Precision

˃ Linear reduction in memory footprint

Reduces weight fetching memory bandwidth 

NN model may even stay on-chip

˃ Reducing precision shrinks inherent arithmetic cost in both 

ASICs and FPGAs

Instantiate 100x more compute within the same fabric and thereby 
scale performance

Precision Modelsize [MB]
(ResNet50)

1b 3.2

8b 25.5

32b 102.5

C= size of accumulator * size of weight *  size of activation
(to appear in ACM TRETS SE on DL, FINN-R)

>> 28
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Assumptions: Application can fill device to 90% (fully parallelizable) 710MHz

Reducing Precision provides Performance Scalability
Example: ResNet50, ResNet152 and TinyYolo

RP reduces model size=> to stay on-chip

Theoretical Peak Performance for a VU13P with different Precision Operations

>> 29
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Reducing Precision Inherently Saves Power

Source: Bill Dally (Stanford), Cadence Embedded Neural 

Network Summit, February 1, 2017

Target Device ZU7EV ● Ambient temperature: 25 °C ● 12.5% of toggle rate ● 0.5 of Static 

Probability ● Power reported for PL accelerated block only
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Rybalkin, V., Pappalardo, A., Ghaffar, M.M., Gambardella, G., Wehn, N. and Blott, M. "FINN-L: Library Extensions and Design Trade-
off Analysis for Variable Precision LSTM Networks on FPGAs."
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What are the downsides of 
reduced precision?
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RPNNs: Closing the Accuracy Gap

>> 32

Float point improvements are slowing down
Reduced precision highly competitive and rapidly improving
BNNs and TNNs are still rapidly improving <10% top5

Latest numbers: Dongqing Zhang∗ , Jiaolong Yang∗ , Dongqiangzi Ye∗ , and Gang Hua 
“LQ-Nets: Learned Quantization for Highly Accurate and Compact Deep Neural Networks”
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1b weights 2b weights 5bit weights 8bit weights FP weights minifloat ResNet-50 Syq

Design Space Trade-Offs

Resnet18
8b/8b
Compute Cost 286
Error 10.68%

Resnet50
2b/8b
Compute Cost 127
Error 9.86% Reduced Precision can provide better accuracy and lower 

hardware cost for specific accuracy targets
In order to find optimal solutions, solution space needs to be 
considered and allow for algorithmic freedom

Pareto-optimal solutions
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The Emerging Computational 

Landscape of Neural Networks

Exciting Times in Computer 

Architecture Research!

>> 34
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Spectrum of New Architectures for Deep Learning

CPUs GPUs
Soft DPUs

(FPGA)
Hard DPUs

(ASIC)

TPU, Cerebras, Graphcore, 
Groq, Nervana, Wave 
Computing, Eyeriss, 
Movidius, Kalray

Intel
AMD
ARM

AMD
NVIDIA

DeePhi
Teradeep
XDNN

DPU: Deep Learning Processing Unit

>> 35

In-Memory 
Compute

Using non-volatile 
resistive memories 
or
stacked DRAM*

*Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M., Williams, R.S. and Srikumar, V., 2016. ISAAC: A convolutional neural 
network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH
Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y. and Xie, Y., 2016, June. Prime: A novel processing-in-memory architecture for neural network 
computation in reram-based main memory. In ACM SIGARCH
Chen, Y., Luo, T., Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N. and Temam, O., 2014, December. Dadiannao: A machine-learning 
supercomputer. In Proceedings of the 47th Annual IEEE/ACM International Symposium on Microarchitecture (pp. 609-622). IEEE Computer Society.

ISAAC, Tetris,
Neurcube

Vector-based SIMD processors
becoming increasingly customized for Deep Learning

(Tensor Cores, Reduced Precision,…)
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Architectural Choices – Macro-Architecture

Soft DPUs
(FPGA)

Hard DPUs
(ASIC)

Customized 
macro-architecture

(Synchronous Dataflow)

TPU, Cerebras, Graphcore, 
Groq, Nervana, Wave 
Computing, Eyeriss, 
Movidius, Kalray

MSR Brainwave*

FINN**

DeePhi
Teradeep
XDNN

>> 36

*Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield, A., Massengill, T., Liu, M., Lo, D., Alkalay, S., Haselman, M. 
and Abeydeera, M.Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro, 38(2) 
https://www.microsoft.com/en-us/research/uploads/prod/2018/06/ISCA18-Brainwave-CameraReady.pdf
**Umuroglu, Yaman, Umuroglu, Y., Fraser, N.J., Gambardella, G., Blott, M., Leong, P., Jahre, M. and Vissers, K. “FINN: A 
framework for fast, scalable binarized neural network inference.” ISFPGA’2017

Matrix of PE

https://www.microsoft.com/en-us/research/uploads/prod/2018/06/ISCA18-Brainwave-CameraReady.pdf
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Synchronous Dataflow (SDF) vs 
Matrix of Processing Elements (MPE)

𝑨𝑻𝒎𝒆𝒎𝒐𝒓𝒚 = 𝑺𝒖𝒎(𝑨𝑻𝒊)

𝑨𝑻𝒊 = 𝒃𝒂𝒕𝒄𝒉 ∗ 𝑭𝑴𝒊𝑫𝑰𝑴 ∗ 𝑪𝑯𝒊 ∗ 𝑲𝒊 + 𝑺𝒊

>> 37

CNV
Layer

Weight

WeightsActivations
Ping-pong

CNV
Layer

Weights

CNV
Layer

Weights

𝑾𝑪𝒎𝒆𝒎𝒐𝒓𝒚

= 𝑴𝑨𝑿 𝑾𝒊

𝑨𝑻𝒎𝒆𝒎𝒐𝒓𝒚 =

𝟐 ∗ 𝒃𝒂𝒕𝒄𝒉 ∗ 𝑴𝒂𝒙(𝑭𝑴𝒊𝑫𝑰𝑴 ∗ 𝑭𝑴𝒊𝑫𝑰𝑴
∗ #𝑪𝑯𝒊)

𝑾𝑪𝒎𝒆𝒎𝒐𝒓𝒚 = 𝑺𝑼𝑴 𝑾𝒊

End points are pure layer-by-layer compute and feed-forward dataflow architecture

Spectrum of Options

MAC, Vector Processor

Lin, X., Yin, S., Tu, F., Liu, L., Li, X. and Wei, S. LCP: a layer clusters paralleling mapping method for accelerating inception and residual networks on FPGA. DAC’2016
Alwani, M., Chen, H., Ferdman, M. and Milder, P. Fused-layer CNN accelerators. MICRO 2016.
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Degree of parallelization 
across layers

• Requires less activation buffering

• Higher compute and memory efficiency due to
custom-tailored hardware design

• Less flexibility

• Less latency (reduced buffering)

• No control flow (static schedule)

• Requires less on-chip weight memory, but more
activation buffers

• Efficiency of memory for weights and activations
depends on how well balanced the topology is

• Flexible hardware, which can scale to arbitrary large
networks

• Compute efficiency is a scheduling problem
=> generating sophisticated scheduling algorithms

Synchronous Dataflow (SDF) vs 
Matrix of Processing Elements (MPE)
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Architectural Choices – Micro-Architecture

CPUs GPUs
Soft DPUs

(FPGA)
Hard DPUs

(ASIC)

Customized 
arithmetic

TPU, Cerebras, Graphcore, 
Groq, Nervana, Wave 
Computing, Eyeriss, 
Movidius, Kalray

Intel
AMD
ARM

AMD
NVIDIA

MSR Brainwave

FINN

BISMO

DeePhi
Teradeep
XDNN

>> 39

Stripes (bit-serial ASIC),
Stanford, Leuven: BinarEye
IBMs’ TrueNorth & latest AI 
accelerator

Judd, P., Albericio, J., Hetherington, T., Aamodt, T.M. and Moshovos, A., 2016, October. Stripes: Bit-serial deep neural network computing. MICRO’2016
Moons, B., Bankman, D., Yang, L., Murmann, B. and Verhelst, M. BinarEye: An always-on energy-accuracy-scalable binary CNN processor with all memory on 
chip in 28nm CMOS, ICC’2018
Lin, X., Yin, S., Tu, F., Liu, L., Li, X. and Wei, S. LCP: a layer clusters paralleling mapping method for accelerating inception and residual networks on FPGA. 
DAC’2016
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Micro-Architecture:
Customized Arithmetic for Specific Numerical Representations

˃ Customizing arithmetic compute allows to maximize 

performance at minimal accuracy loss

Flexpoint, Microsoft Floating Point formats, Binary & Ternary, 
Bfloat16

˃ Which do we focus on?

˃ What’s more, non-uniform arithmetic can yield more efficient 

hardware implementations for a fixed accuracy*

Run-time programmable precision: Bit-Serial

>> 40
*Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo, “Weighted-Entropy-based Quantization for Deep Neural Networks” CVPR’2017]
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Micro-Architecture:
Bit-Parallel vs Bit-Serial

˃ Bit-serial can provide run-time programmable precision with a fixed architecture
ASIC* or FPGA** overlay

˃ FPGA: Flexibility comes at almost no cost and provides equivalent bit-level performance at chip-

level for low precision*

Bit parallel

MAC

A(n)

B(n)

O(m)

Bit serial

MAC

A(n)

B(n)

O(m)

A(n)

Latency vs resource 

trade-off

>> 41
*Judd, P., Albericio, J., Hetherington, T., Aamodt, T.M. and Moshovos, A., 2016, October. Stripes: Bit-serial deep neural network computing. MICRO’2016
**Umuroglu, Rasnayake, Sjalander"BISMO: A Scalable Bit-Serial Matrix Multiplication Overlay for Reconfigurable Computing." FPL’2018 
https://arxiv.org/pdf/1806.08862.pdf

https://arxiv.org/pdf/1806.08862.pdf
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Summary
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Summary

˃ ML has the potential to address many of the grand engineering challenges of this 

century

˃ However, compute & memory requirements are huge and flexibility and scalability 

are key

˃ New, customized computer architecture are emerging

˃ FPGAs can play an important role here, in particular in conjunction with reduced 

precision and customized macro architectures

Orders of magnitude improvement in performance, resources and power consumption
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Exciting Times for our Community:
Finding Optimal Solutions within a Complex Design Space

Application: Image Classification Object Detection Translation Recommendation …

Algorithm: DeepSpech2AlexNet ResNet50 …

ImageNet Pascal VOC
Dataset:

TIMIT MovieLens-20M …

Hardware:

YoloV2

COCO Librispeech

Cloud IoT

FPGAs GPUs TPUs FPGAs GPUs CPUsCPUs Custom

…

Implementation:
Impl1

Impl2
Impl3

…

…
Each Combination delivers different 
results regarding the design targets:
Throughput, power, latency, cost,…
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Adaptable.

Intelligent.
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THANK YOU!

FPGA 2017: FINN: A Framework for Fast, Scalable Binarized Neural Network Inference
https://arxiv.org/abs/1612.07119

PARMA-DITAM 2017: Scaling Binarized Neural Networks on Reconfigurable Logic
https://arxiv.org/abs/1701.03400

ICCD 2017: Scaling Neural Network Performance through Customized Hardware Architectures on 
Reconfigurable Logic 

https://ieeexplore.ieee.org/abstract/document/8119246/
H2RC 2016: A C++ Library for Rapid Exploration of Binary Neural Networks on Reconfigurable Logic

https://h2rc.cse.sc.edu/2016/papers/paper_25.pdf
ICONIP’2017: Compressing Low Precision Deep Neural Networks Using Sparsity-Induced Regularization in 
Ternary Networks

https://arxiv.org/abs/1709.06262
CVPR’2018: SYQ: Learning Symmetric Quantization For Efficient Deep Neural Networks
DATE 2018: Inference of quantized neural networks on heterogeneous all-programmable devices 
https://ieeexplore.ieee.org/abstract/document/8342121/
ARC’2018: Accuracy Throughput Tradeoffs for Reduced Precision Neural Networks

https://arxiv.org/abs/1612.07119
https://arxiv.org/abs/1701.03400
https://ieeexplore.ieee.org/abstract/document/8119246/
https://h2rc.cse.sc.edu/2016/papers/paper_25.pdf
https://arxiv.org/abs/1709.06262
https://ieeexplore.ieee.org/abstract/document/8342121/

