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' Xilinx Research - Ireland Ivo Bolsens
CTO ‘
=

» Since 13 years

> Part of the worldwide CTO organization (8 out of 36)

> Al Lab expansion part-financed through Kees Vissers

% IDA Ireland o

© Copyright 2018 Xilinx 8 XI I_INX



' Current Xlabs Dublin Team

Plus 2 in Xilinx University Program
(Cathal McCabe, Katy Hurley)
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'Plus a Very Active Internship Program
®NTNU

> On average 4-6 interns at any given time Norwegian University of
. e Science and Technology
>> From top universities all over the world

Karlsruher Instltut fur Technologle

>> \We are always looking for talent ;-)
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> Qverall MILANO 1863 O

>> 67 interns since 2007

>> Many found employment
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Machine Learning,
Neural Networks & its Challenges
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'The Rise of The Machine (Learning Algorithms)

4‘ 1800 c 1900 6 2000

QO —

Mechanical Electrical Digital Virtual

Steam powered Mass production Automated Machine Learning
mechanical with electrical production Industrial Internet
production energy

> Potential to solve the unsolved problems
>> Making solar energy economical, reverse engineering the brain (Jeff Dean, Google Brain 2017)

> Many difficult ethical questions
>> Will machines destroy jobs? Al apocalypse?

> History has shown: We are going through cycles of inventions followed by society adjustments
>> All of this has happened before and will happen again (Battlestar Galactica, 2014)

> Let’s look at what the technology can do, and how we FPGA designers & computer architects
broaden its adoption

>> 7 © Copyright 2018 Xilinx $ XILINX.



'A.I. — Machine Learning - Neural Networks

Artificial Intelligence (A.l.)

“machine mimics cognitive

functions such as learning and
problem solving”

Computer Vision

Pattern Recognition

Machine Learning

Cognitive Rob

Linear Regression

K-Means Clustering

Neural Networks

— “Gives computers the ability to
Decision Trees P y

>> 8

learn without being explicitly
programmed”

“Predominantly used ML algorithm

Mimics the human brain”
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'Convolutional Neural Networks (CNNs)
from a computational point of view

i0 Wil 10 Synapse with weight wji

> CNNs are usually feed forward* computational ~Z ni
graphs constructed from one or more layers 1 §W12 n2 Neuron ni
>> Up to 1000s of layers

> Each layer consists of neurons ni which are n0 = Act(w00%0 + 1 0%1)
Interconnected with synapses, associated with
weights wij
Weights Weights Weights
> Each neuron computes: [ WO ] [ w1 ] [ w2 ]
> Typically linear transform (dot-product of receptive field) \Z v v
>> Followed by a non-linear “activation” function
Layer Layer Layer
Inputs Outputs
LO L1 L2
>> 9 © Copyright 2018 Xilinx 8 X”_INX
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'Convolutional Neural Networks (CNNs)
Why are they so popular?

> Requires little or no domain expertise

> NNs are a “universal approximation function”

> If you make it big enough and train it enough _

> Can outperform humans on specific tasks

>> 10

30

22.5

15

7.5

2010

ILSVRC top-5 error on ImageNet

2011 2012 2013 2014 Human  ArXiv 2015
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> Will increasingly replace other
algorithms

>> unless for example simple rules can
describe the problem

> Solve problems previously
unsolved by computers

> And solve completely unsolved
problems
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'From Training to Inference

Training
dataset labels Training
Process for a machine to learn by
e | (e ) (e ) optimizing models (weights) from labeled
M data.
LaL\Ber LaLyler LaLyzer Irﬁ
dog” | Typically computed in the cloud
Inference
Using trained models to predict or
e ) e ) e estimate outcomes from new inputs.

Layer Layer Layer " ”
L0 L1 L2 ouets dog

Deployment at the edge
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What iIs the

Challenge? E
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'Example: ResNet50
Backpropagation — 1 Image

>>13

| ¥
Input Image Neural Network Result Label
[ Weights ] [ Weights ] [Weights]
Cat? Dog!!!

For ResNet50:

23 Billion operations
weights, weight gradients, updates: 303MBytes of storage (3-5x)
activations, gradients: 80 MBytes

*Assuming 32b SP

© Copyright 2018 Xilinx

& XILINX



'Example: ResNet50

Training — 1.2 Million Images for 1 epoch

Input Image Neural Network Result Label
4 N 4 N 4 N
Weights Weights Weights
. J . J \ J
A4 A4 \
Cat? Dog!!!

For ResNet50:

>> 14
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1 epoch takes 1.2M * 23 Billion operations = 23 * 101> operations (peta)
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'Example: ResNet50

Training — Approximately 100 Epoc
ResNet-50 Retraining w8 a8 ImageNet256 Top5
| v 0.91 -
Input Image Neural Network Result Label
> L] 0.90 -
eights ~cights eights
Wgt/k %ntJlW%tJ .
j Cat Dog!!! § 088
0.87 -
0.86 -
- 0.85 -
0 50000 100000 150000 200000 250000 300000
Numlters
For ResNet50: 100 * 23 101> =2.3 * 1018 (exa)

Single P40 GPU (12TFLOPS): 11days @ 100%, usually ~2 weeks

ResNet50:
*  Forinference: Billions of operations, and 10s of MegaBytes
*  For training: Quintillions/Exa of operations, and 100s of MegaBytes

©_Copyr|ght 2018 Xilinx 8 XI I_INX
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'Challenge 1

Calculation of Cost Per Transistor by Node

Wrong Trend

Cost per million gates

90nm 65nm 40nm 28nm 20nm 14nm

Source: IBS

> Huge amount of compute and memory

> While compute performance is no longer scaling and becomes more expensive
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What else?
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102 AlphaGo

Gaming % 3D reconstruction from
strategy drone images

Translation ‘
Service Real-time, y
A IIDat_af sensor-based-
S nalysis 1o control -
Hearing Aids . Healthcare Medical

WATSON

-~ " Diagnoses
Brief history of IBM Watson .

Jeopardy!
Research Project  Grand Challenge for
(2006 - ) (Feb2011) ealthcare ervices

aaaaaaaaaa

NETFLIX

> Soanion Applcations feaa ia:az;fom o :"3“
Optical Char. SsESEmE Yy
Recognition Recommender
Systems
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*architecture independent

' Challenge 2: Inference Compute and Memory e

Variation Across a Spectrum of Neural Networks

450.

400.

350.

300.

250.

200.

GOPS and MBytes respectively

150.

100.

50.

o8 ® % ™ o N a Ny
o~ a-& < N » 2 ) o &
@ R

ba
Im

Sl & Y Y 5 : S
A A Y e
MLP ageNet Classificationn CNNs

Spectrum of Neural Networks

Inference (1 input)
GOPS

& “@ﬁe‘ct “| Huge Variation in Compute and Memory Requirements, even
Detection | within subgroups

>> 139
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Anything else?
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'Challenge 3:

Different Use Cases, Different Design Targets
Accuracy, speed, power, latency, cost

> AR :
; - PR P > 3D reconstruction of
> ADAS > Hearing aids: - High throughput IR i
>> Accuracy >> Low power > Low Iatency g
>> High throughput

> Very low latency . Low power >> Hig_h throughput
>> Low throughput >> Offline

© Copyright 2018 Xilinx 8 XI I_INX



Finally,...

)7
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'Challenge 4.
Neural Networks Change @ Increasing Rate

> Graph connectivity, number and types of layers are changing

DenseNet (2016)

AlexNet (2012) =
=kl GoogleNet (2014) ¥l @ ‘
I R o o ) S a 5 ﬁ Lo
N i, T, ' H EE LR+ Eau Heaf F\ @\

500 # Stat.ML Papers on ArXiv 17321
> Increasing stream of research 1350
900 |
450

’ 72013 2014 2015 2016 20177

Ce Zhang, ETH Zurich, Systems Retreat 2018
© Copyright 2018 Xilinx 8 X”_INX



'In Summary: CNNs are associated with...
> Significant amounts of memory and computation
> Huge variation between topologies and within them
> Broad spectrum of applications with different design targets
> Fast changing algorithms

> However, incredibly parallel!

>> For convolutions: filter dimensions, feature map dimensions, input & output channels, batches,
layers, and even precisions

>> 24 © Copyright 2018 Xilinx & XILINX



'Architectural Challenges/ Pain Points #

Input samples

>> 25

Weight & activation
fetching: bandwidth
throttles performance

Weight Buffer
Huge amount of memory [ |

spilling into DRAM

And variations
ACTIVAtion

Buffering Compute Array

Partial Sums

Activation Functions/ Pooling...

embedded
Latency in real-time
processing

Results

# Power consumption for

Huge amount of compute and variation-

Limited scalability with new technology nodes

Requires algorithmic & architectural innovation

& XILINX




Algorithmic Optimization Techniques N\

s

22 XILINX
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'Optimization Techniques

Loop transformations to minimize memory access*

Input & I

Pruning

Tnput samples Activation

Buffering

Compression

Winograd, Strassen and FFT

Novel layer types (squeeze, shuffle, shift)

Numerical Representations & Reducing Precision

NN Inference/ Training Accelerator

fetching: bandwidth

DRA Weight & activation
throttles performance

Power consumption for
. embedded

—
Neight Buffer . -
Huge amount of memory [ . Latencyin re.al-tlme
spilling into DRAM processing

Results

Compute Array Huge amount of compute -

Limited scalability with new
technology nodes

Partial Sums

Activation Functions/ Pooling...

*Chen, Y.H., Krishna, T., Emer, J.S. and Sze, V., 2017. Eyeriss: An energy-efficient reconfigurable accelerator for deep

>> 27

convolutional neural networks. IEEE Journal of Solid-State Circuits, 52(1), pp.127-13

© Copyright 2018 Xilinx
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' Example: Reducing Bit-Precision

> Linear reduction in memory footprint Precision Moself\zzis[g/lB]
>> Reduces weight fetching memory bandwidth (ResNet50)
>> NN model may even stay on-chip 1b 3.2
8b 25.5
> Reducing precision shrinks inherent arithmetic cost in both 32b 102.5

ASICs and FPGASs

>> |nstantiate 100x more compute within the same fabric and thereby
scale performance

2000 T T T T T
1800 I +  RTL Compression ]

— 1.1*C " X
1600 - v His Compression / ]
1400  — 1.6*C -
1200 L - L - . /X

1000 -
800 |-
600 |-
400 |
200 |- oy

0

LUT Costs

e | | | | C= size of accumulator * size of weight * size of activation
0 200 400 600 800 1000 1200 (to appear in ACM TRETS SE on DL, FINN-R)

C - Complexity (Bit Products)

>>28 © Copyright 2018 Xilinx & XILINX




' Reducing Precision provides Performance Scalability
Example: ResNet50, ResNet152 and TinyYolo

1000000.0

zl = z a1
——VU13P-1b  ==e=VU13P-2b = =] = 5
1] = ] Rels
VU13P-4b  =——=VU13P-8b z| ¢ 2 2
o o =1
= o = E
——\/U13P-FP 5| = o4 =
=| & c c
el = < S
o g o
3l 21 21
100000.0 <l z - o o
@ . § | >>_~ | O
2| = - =
g (= o ' ' C
I ] ©
| | £
I | (@]
E‘ 10000.0 7 I ! =
o ‘ -l (<))
o] | | o
| |
()
1 £
' ! Q
| | E
1000.0 ! | )
| | o
| [ 0
@®
| | O
| | n
100.0 | | ol
1 10 100 1000 10000 100000 Y
OPS:BYTE

Theoretical Peak Performance for a VU13P with different Precision Operations
Assumptions: Application can fill device to 90% (fully parallelizable) 710MHz

RP reduces model size=> to stay on-chip >

© Copyright 2018 Xilinx
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FPGA:
LSTM - Test Error vs Power(W)
20
3/3
2/2 ® /
18 %)
— 16 L
5 ."2/3
5 14 v
0 '..3/4
- 12 L CLLETTTT T, 2/8
2/4 “e4/4
10 4/8
‘ )
& . 8/8
8 L LTI o
0.500 0.700 0900 1.100 1.300 1500 1.700 1.900 2.100
Estimated Power Consumption [W]
e Bits (W/A)
=== Pareto Optimal

Reducing Precision Inherently Saves Power

ASIC:
Relative Energy Cost

Operation: Energy (pJ) i
8b Add 0.03 |
16b Add 0.05 |
32b Add 0.1

16b FP Add 0.4 I
32b FP Add 0.9
8b Mult 0.2 |
32b Mult 3.1

16b FP Mult 1.1 I
32b FP Mult 3.7
32b SRAM Read (8KB) 5

32b DRAM Read 640

p—

10 100 1000 lOOUOl

Target Device ZU7EV e Ambient temperature: 25 °C e 12.5% of toggle rate e 0.5 of Static
Probability @ Power reported for PL accelerated block only

Source: Bill Dally (Stanford), Cadence Embedded Neural
Network Summit, February 1, 2017

Rybalkin, V., Pappalardo, A., Ghaffar, M.M., Gambardella, G., Wehn, N. and Blott, M. "FINN-L: Library Extensions and Design Trade-

>>30 Analysis for Variable Precision LSTM Networks on FPGASpyright 2018 Xilinx
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What are the downsides of

reduced precision? %
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RPNNSs: Closing the Accuracy Gap

Top-5 Error (ImageNet)
60.00

Float point improvements are slowing down
50.00

Reduced precision highly competitive and rapidly improving

BNNs and TNNs are still rapidly improving <10% top5
40.00
s
5 30.00
&=
20.00
10.00
0.00
06/07/2009 18/11/2010 01/04/2012 14/08/2013 27/12/2014 10/05/2016 22/09/2017 04/02/2019
Publication Date
BNN CNN Reduced Precision
>> 32 Latest numbers: Dongqing Zhang *, Jiaolong Yang *, Dong

n qzigllvgzi,l)’e *, and Gang Hua
“LQ-Nets: Learned Quantization for Highly Accura(t:g %g?ompac 'Bc)e(ep Neural Networks”
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Design Space Trade-Offs

IMAGENET CLASSIFICATION TOP5% VS COMPUTE COST F(LUT,DSP)

¢ 1b weights 2b weights 5bit weights 8bit weights FP weights minifloat + ResNet-50 = Syq

30.00
L g
200 Resnet18
8b/8b

20.00 Compute Cost 286
< Error 10.68%
[a'd
% 15.00

Resnet50 . -
500 2b/8b Pareto-optimal solutions N B ——1

Compute Cost 127
Error 9.86% Reduced Precision can provide better accuracy and lower

10 10.0 100.0 1000.0 1 hardware cost for specific accuracy targets
comf In order to find optimal solutions, solution space needs to be
considered and allow for algorithmic freedom

0.00
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The Emerging Computational
Landscape of Neural Networks
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'Spectrum of New Architectures for Deep Learning
R

[DPU: Deep Learning Processing Unit

CPUs GPUs Soft DPUs Hard DPUs In-Memory

(FPGA) (ASIC) Compute

\S 1/
[T - EEEE . FEEER resatye memarist
S AMD DI NVIDIA %DDD Teradeep %ﬁH%E’_ or
ARM EEEN EEEE EEEES stacked DRAM*
ISAAC, Tetris,
| TPU, Cerebras, Graphcore, Neurcube
Vector-based SIMD processors S;‘:jpl':'t‘f;‘g’agjel’l‘s"e
becoming increasingly customized for Deep Learning Movidius, Kalray
(Tensor Cores, Reduced Precision,...)

*Shafiee, A., Nag, A., Muralimanohar, N., Balasubramonian, R., Strachan, J.P., Hu, M., Williams, R.S. and Srikumar, V., 2016. ISAAC: A convolutional neural
network accelerator with in-situ analog arithmetic in crossbars. ACM SIGARCH
Chi, P., Li, S., Xu, C., Zhang, T., Zhao, J., Liu, Y., Wang, Y. and Xie, Y., 2016, June. Prime: A novel processing-in-memory architecture for neural network
computation in reram-based main memory. In ACM SIGARCH
>> 35 Chen, Y., Luo, T, Liu, S., Zhang, S., He, L., Wang, J., Li, L., Chen, T., Xu, Z., Sun, N. and Temam, O., 2014, December. Dadiannao: A machine-learning { XI I_INX
supercomputer. In Proceedings of the 47th Annual IEEE/ACM Interna%&fb%'%%&%ﬁv@“%icroarchitecture (pp. 609-622). IEEE Computer Society. - .



'Architectural Choices — Macro-Architecture

>> 36

ElE BEE BEE NN
] | mxd | mmg | =S|
Customized HE BEE EE Bl

MSR Brainwave*

macro-architecture
(Synchronous Dataflow)

*Chung, E., Fowers, J., Ovtcharov, K., Papamichael, M., Caulfield, A., Massengill, T, Liu, M., Lo, D., Alkalay, S., Haselman, M.

Soft DPUs Hard DPUs
(FPGA) (ASIC)
EEEE ., EEEEE
Matrix of PE %%El% T:ereep %ﬁj@ﬁ@—
BEEEE XDNN [ [ [ | ||

R -0EE fg v

TPU, Cerebras, Graphcore,
Groq, Nervana, Wave
Computing, Eyeriss,
Movidius, Kalray

and Abeydeera, M.Serving DNNs in Real Time at Datacenter Scale with Project Brainwave. IEEE Micro, 38(2)
https://www.microsoft.com/en-us/research/uploads/prod/2018/06/ISCA18-Brainwave-CameraReady.pdf

**Umuroglu, Yaman, Umuroglu, Y., Fraser, N.J., Gamb@@gy%g@t, ﬂfétxer Leong, P, Jahre, M. and Vissers, K. “FINN: A
framework for fast, scalable binarized neural network inference.” ISFPGA’2017
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'Synchronous Dataflow (SDF) vs
Matrix of Processing Elements (MPE)

HEEN

R - S
BN BN EBE EE Spectrum of Options %%%

MAC, Vector Processor

>> End points are pure layer-by-layer compute and feed-forward dataflow architecture

W Cpnemory = SUM(W1) D ey
Weights Weights
E 2 * batch * Max(FMiDIM * FMiDIM
* #CHI)
— CNV W CNV

111
Layer Layer Activations CNV —_—
Ping-pong Layer

AT emory = SUm(ATi)
ATi = batch * FMip;y, « CHi * (Ki + Si)

>> 37 Lin, X, Yin, S., Tu, F, Liu, L., Li, X. and Wei, S. LCP: a layer clusters paralleling .ma%in method for accelerating inception and residual networks on FPGA. DAC ’2?6 Xl I_INX
Alwani, M., Chen, H., Ferdman, M. and Milder, P. Fused-layer CNN ac@e?é’r‘%@@? F(;é;()ﬁl@éla -~ "



' Synchronous Dataflow (SDF) vs
Matrix of Processing Elements (MPE)

BN BN EE NS Degree of parallelization pE—
HE—AE—EE—EN | EEEE
EE BN EE BN SRR EEEE

* Requires less activation buffering * Requires less on-chip weight memory, but more

activation buffers
 Higher compute and memory efficiency due to e Efficiency of memory for weights and activations
custom-tailored hardware design depends on how well balanced the topology is
e Less flexibility * Flexible hardware, which can scale to arbitrary large

Less latency (reduced buffering)

No control flow (static schedule) .

>> 38

networks

Compute efficiency is a scheduling problem
=> generating sophisticated scheduling algorithms

© Copyright 2018 Xilinx
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'Architectural Choices — Micro-Architecture

>> 39

EEER
BEE-EBER—pR
EE BEE BB

BISMO

EE EE B
#[#] 22l 2]
]| | 2]
#|#]#]2]#]
2| 2 | 2] 2]

FINN

Soft DPUs Hard DPUs
= aps (FPGA) (ASIC)
Intel EEEN AMD WEEE  eephi EEmEE
‘ AMD EEEE wion EEE oredeer EmEmE |
ARM EEEE S LIE] XDNN EEEEE
EE EE EE BN
| o | g | g |
HE BN BEE BN .
MSR Brainwave Customized
arithmetic

22| ]2
z]2]z]#]7]
oo (22|27
#]a]2]]2]
#[a]z2]2]

TPU, Cerebras, Graphcore,
Groq, Nervana, Wave
Computing, Eyeriss,
Movidius, Kalray

Stripes (bit-serial ASIC),
Stanford, Leuven: BinarEye
IBMs’ TrueNorth & latest Al
accelerator

Judd, P, Albericio, J., Hetherington, T., Aamodt, T.M. and Moshovos, A., 2016, October. Stripes: Bit-serial deep neural network computing. MICRO’2016
Moons, B., Bankman, D., Yang, L., Murmann, B. and Verhelst, M. BinarEye: An always-on energy-accuracy-scalable binary CNN processor with all memory on

chip in 28nm CMOS, ICC’2018

Lin, X., Yin, S., Tu, F,, Liu, L., Li, X. and Wei, S. LCP: a layer clusters paéaé[géiﬂ%m%ggwgimgthod for accelerating inception and residual networks on FPGA.

DAC’2016

& XILINX



' Micro-Architecture:
Customized Arithmetic for Specific Numerical Representations

> Customizing arithmetic compute allows to maximize

erformance at minimal accuracy loss
: /

>> Flexpoint, Microsoft Floating Point formats, Binary & Ternary,

Bfloat16

> Which do we focus on?

> What’s more, non-uniform arithmetic can yield more efficient
. . . * DEC INC CONCAVE CONVEX
hardware implementations for a fixed accuracy
_ o _ _ Top-1[%] 53.79 50.35 54.45 54.33
>> Run-time programmable precision: Bit-Serial Top-5[%] 77.59 74.89 76.43 78.20

Table 2. Accuracy comparison of our approach under different
styles of layer-wise quantization.

>>40 *Eunhyeok Park, Junwhan Ahn, and Sungjoo Yoo, “Weighted@fieppjgbugedaitimtization for Deep Neural Networks” CVPR’2017] 8 Xl I_INX



' Micro-Architecture:
Bit-Parallel vs Bit-Serial

> Bit-serial can provide run-time programmable precision with a fixed architecture
>> ASIC* or FPGA** overlay

A(n)

B(n)

Bit parallel

o(m)

Latency vs resource
trade-off

Bit serial

O(m)

——

> FPGA: Flexibility comes at almost no cost and provides equivalent bit-level performance at chip-

level for low precision*

>>41]

*Judd, P, Albericio, J., Hetherington, T., Aamodt, T.M. and Moshovos, A., 2016, October. Stripes: Bit-serial deep neural network computing. MICRO’2016
**Umuroglu, Rasnayake, Sjalander"BISMO: A Scalable Bit-Serial Matrix Multiplication Overlay for Reconfigurable Computing."” FPL’2018
https.//arxiv.orq/pdf/1806.08862.pdf

© Copyright 2018 Xilinx
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Summary
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'Summary

> ML has the potential to address many of the grand engineering challenges of this
century

> However, compute & memory requirements are huge and flexibility and scalability
are key

> New, customized computer architecture are emerging

> FPGASs can play an important role here, in particular in conjunction with reduced
precision and customized macro architectures
>> QOrders of magnitude improvement in performance, resources and power consumption

© Copyright 2018 Xilinx 8 XI I_INX



' Exciting Times for our Community:
Finding Optimal Solutions within a Complex Design Space

Application:

Dataset:

Algorithm:

Hardware:

Implementation:

Image Classification

Object Detection

v

)
v

Translation Recommendation

1

v

v

T_¢

ImageNet COCO Pascal VOC TIMIT Librispeech MovieLens-20M

1 1 1 i\ &

v \’ v

AlexNet ResNet50 YoloV2 DeepSpech2
AN A
FPGAS GPUs TPUs CHUs FPGAs GPUs CPUs Custom
A A A A A A
Limam 1

Imoni Each Combination delivers different

© Copyright 2018 Xilinx

results regarding the design targets:
Throughput, power, latency, cost,...
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THANK YOU!

Adaptable.

PARMA-DITAM 2017: Scaling Binarized Neural Networks on Réconfigurablé Logic

ICCD 2017: Scaling Neural Network Performance through Customized Hardware Architectures on
Reconfigurable Logic

H2RC 2016: A C++ Library for Rapid Exploration of Binary Neural Networks on Reconfigurable Logic

ICONIP’2017: Compressing Low Precision Deep Neural Networks Using Sparsity-Induced Regularization in
Ternary Networks

CVPR’2018: SYQ: Learning Symmetric Quantization For Efficient Deep Neural Networks
DATE 2018: Inference of quantized neural networks on heterogeneous all-programmable devices

XILINX.
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ARC’2018: Accuracy Throughput Tradeoffs for Reduced Precision Neural Networks
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