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Background

˃Xilinx
Fabless semiconductor company

Founded in Silicon Valley in 1984

Today: 

‒ 3,500 employees

‒ $2.25B revenue

Invented the FPGA

1st FPGA in 1985: XC2064

128 3-input LUTs
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What are FPGAs?
Customizable, Programmable Hardware Architectures

˃ The chameleon amongst the semiconductors…

Customizes IO interfaces, compute architectures, memory subsystems to meet the application

˃ Classic use case: Nothing else works, and you want to avoid ASIC implementation

˃ Recent use cases: Custom hardware architecture for performance or efficiency required

?

Non-standard IOs

Different functionality?

Higher performance or 
efficiency metrics?
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Context Machine Learning

Trends meeting Technological Reality
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Mega-Trend: 

The Rise of the Machine (Learning Algorithm)
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˃ Potential to solve the unsolved problems

˃ Making solar energy economical, reverse engineering the brain 

(Jeff Dean, Google Brain 2017)

˃ How can we computer architects help to enable the roll-

out of these algorithms?
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Convolutional Neural Networks (CNNs)
Why are they so popular?

˃ Requires little or no domain expertise

˃ NNs are a “universal approximation function”

˃ If you make it big enough and train it enough

Can outperform humans on specific tasks

˃ Will increasingly replace other 

algorithms

unless for example simple rules can 
describe the problem

˃ Solve problems previously 

unsolved by computers

˃ And solve completely unsolved 

problems

>> 6
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Cat?

Input Image

Convolutional Neural Networks:
Forward Pass (Inference)

Neural Network Neural Network

For ResNet50:
70 Layers
7.7 Billion operations 
25.5 millions of weight 
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Basic arithmetic, incredible parallel but
Huge Compute and Memory  Requirements
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Mega-Trend:

Explosion of Data

˃ Computing shifts towards cloud 

computing

˃ Data storage requirements explode
#users

Photos => videos

DNA!

˃ Big data problem: 

Gaining intelligence out of vast amounts of 
unstructured data using machine learning 
algorithms
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Stephens, Zachary D., et al. "Big data: astronomical or 
genomical?." PLoS biology 13.7 (2015): e1002195.
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Technology: 

End of Moore’s Law

Calculation of Cost Per Transistor by Node

Source: IBS
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Wrong Trend

Economics become questionable
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Technology: 

End of Dennard Scaling
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Source: Intel

Power dissipation is problematic



© Copyright 2018 Xilinx

TechnologyTrends

Era of Heterogeneous Compute using Accelerators
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˃ Diversification of increasingly heterogenous devices and system

˃ Moving away from standard van Neumann architectures

˃ Architectural innovation
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Increasingly Heterogeneous Devices

From the Xilinx World: Evolution of FPGAs to ACAPs
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Towards Heterogeneous Cloud: AWS
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Insight 2016: AWS adding FPGA instances
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Pretty unconventional:

Customized Hardware for AI
DPU: Deep Learning Processing Unit

˃ Custom AI Silicon

˃ Quantum computing

Page 14

˃ Both soft and hard DPUs
Microsoft Brainwave
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Popular DPU Architecture

CNN

Matrix of 
Processing Engines

DPU DMA

Onchip
buffering

MAC, Vector Processor

“Layer by layer compute”
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Even more unconventional:
Custom-Tailored Hardware Architectures (Macro-Level)
Synchronous Dataflow

10MOPS

1MOPS

10PE
1PE

˃ Hardware Architecture Mimics the NN Topology 

˃ Customized feed-forward dataflow architecture to match network topology & 

performance targets 
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• Higher compute and memory efficiency due
to custom-tailored hardware design

• Less flexibility

• No control flow (static schedule)

• Efficiency depends on how well balanced the
topology is

• Scales to arbitrary large networks

• Compute efficiency is a scheduling problem

Synchronous Dataflow (SDF) vs 
Matrix of Processing Elements (MPE)

Spectrum of Options

SDF
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Further unconventional at the Micro-Architecture, leveraging

Floating Point to Reduced Precision Neural Networks 
Deliver Competitive Accuracy

Float point improvements are slowing down

Reduced precision competitive accuracy
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Reducing Precision
Scales Performance & Reduces Memory

˃ Reducing precision shrinks hardware cost

Instantiate 100x more compute within the same fabric

Thereby scale performance 100x

˃ Potential to reduce memory footprint

NN model can stay on-chip => no memory bottlenecks

Precision Modelsize [MB]
(ResNet50)

1b 3.2

8b 25.5

32b 102.5
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Reducing Precision Inherently Saves Power

Source: Bill Dally (Stanford), Cadence Embedded Neural 

Network Summit, February 1, 2017

Target Device ZU7EV ● Ambient temperature: 25 °C ● 12.5% of toggle rate ● 0.5 of Static 

Probability ● Power reported for PL accelerated block only
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LSTM - Test Error vs Power(W)
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Pareto Optimal
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Rybalkin, V., Pappalardo, A., Ghaffar, M.M., Gambardella, G., Wehn, N. and Blott, M. "FINN-L: Library Extensions and Design Trade-
off Analysis for Variable Precision LSTM Networks on FPGAs."
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Taking unconventional one step further still:

Bit-Parallel vs Bit-Serial

˃ Parallelize across the bit precision

˃ FPGA: provides equivalent bit-level performance at chip-level for low precision* + flexible for run-

time programmable precision

Bit parallel

ALU

A(n)

B(n)

O(m)

Bit serial

ALU

A(n)

B(n)

O(m)

A(n)

Latency vs resource 

trade-off
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Umuroglu, Rasnayake, Sjalander"BISMO: A Scalable Bit-Serial Matrix Multiplication Overlay for Reconfigurable Computing." FPL’2018 
https://arxiv.org/pdf/1806.08862.pdf

https://arxiv.org/pdf/1806.08862.pdf
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1b weights 2b weights 5bit weights 8bit weights FP weights minifloat ResNet-50 Syq

Design Space Trade-Offs

Resnet18
8b/8b
Compute Cost 286
Error 10.68%

Resnet50
2b/8b
Compute Cost 127
Error 9.86%

Unconventional with reduced Precision can
• reduce cost / resources
• save power
• scale performance

Pareto-optimal solutions
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Summary

• Unconventional computing architectures emerge to help 
with the roll-out of deep learning

• Leveraging customized dataflow architectures and 
precisions, these provides dramatic performance scaling 
and energy efficiency benefits

• Providing new exciting trade-offs within the design space
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Adaptable.

Intelligent.
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THANK YOU!

More information can be found at:
http://www.pynq.io/ml

http://www.pynq.io/ml

