To receive notifications about scheduled maintenance, please subscribe to the mailing-list gitlab-operations@sympa.ethz.ch. You can subscribe to the mailing-list at https://sympa.ethz.ch

Commit 7389f941 authored by spiasko's avatar spiasko
Browse files

ex11 gelöst

parent f88897db
......@@ -26,18 +26,15 @@
"source": [
"## Crystallographic point groups"
]
},
{
"cell_type": "code",
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"14 P 21/c\n",
" setting 1\n",
......@@ -148,33 +145,40 @@
" return Atoms(cell=cell[0],\n",
" scaled_positions=cell[1],\n",
" numbers=cell[2])"
]
},
{
"cell_type": "code",
"execution_count": 19,
{
"cell_type": "code",
"execution_count": 6,
"metadata": {},
"outputs": [],
"source": [
"def a_equiv_b(a,b):\n",
" \"\"\"Function that identifies whether two crystals are equivalent\"\"\"\n",
"\n",
" # getting symmetry datasets for both crystals\n",
" cryst_a = spglib.get_symmetry_dataset(ase_to_spgcell(ase_atoms=a), symprec=1e-5, angle_tolerance=-1.0, hall_number=0)\n",
" cryst_b = spglib.get_symmetry_dataset(ase_to_spgcell(ase_atoms=b), symprec=1e-5, angle_tolerance=-1.0, hall_number=0)\n",
"\n",
" cryst_b = spglib.get_symmetry_dataset(ase_to_spgcell(ase_atoms=b), symprec=1e-5, angle_tolerance=-1.0, hall_number=0)\n",
" samecell = np.allclose(cryst_a['std_lattice'], cryst_b['std_lattice'], atol=1e-5)\n",
" samenatoms = len(cryst_a['std_positions']) == len(cryst_b['std_positions'])\n",
" samespg = cryst_a['number'] == cryst_b['number']\n",
" \n",
" def test_rotations_translations(cryst_a, cryst_b, repeat):\n",
" cell = cryst_a['std_lattice']\n",
" pristine = crystal('Mg', [(0, 0., 0.)], \n",
" spacegroup=int(cryst_a['number']),\n",
" cellpar=[cell[0]/repeat[0], cell[1]/repeat[1], cell[2]/repeat[2]]).repeat(repeat)\n",
"\n",
" sym_set_p = spglib.get_symmetry_dataset(ase_to_spgcell(ase_atoms=pristine), symprec=1e-5,\n",
" angle_tolerance=-1.0, hall_number=0)\n",
"\n",
" for _,trans in enumerate(zip(sym_set_p['rotations'], sym_set_p['translations'])):\n",
" pnew=(np.matmul(trans[0],cryst_a['std_positions'].T).T + trans[1]) % 1.0\n",
" fulln = np.concatenate([cryst_a['std_types'][:, None], pnew], axis=1)\n",
" cellpar=[cell[0]/repeat[0], cell[1]/repeat[1], cell[2]/repeat[2]]).repeat(repeat)\n",
" fullb = np.concatenate([cryst_b['std_types'][:, None], cryst_b['std_positions']], axis=1)\n",
" sorted_n = np.array(sorted([ list(row) for row in list(fulln) ]))\n",
" sorted_b = np.array(sorted([ list(row) for row in list(fullb) ]))\n",
" if np.allclose(sorted_n, sorted_b, atol=1e-5):\n",
" sym_set_p = spglib.get_symmetry_dataset(ase_to_spgcell(ase_atoms=pristine), symprec=1e-5,\n",
" angle_tolerance=-1.0, hall_number=0)\n",
"\n",
" for _,trans in enumerate(zip(sym_set_p['rotations'], sym_set_p['translations'])):\n",
" return True\n",
" return False\n",
......
......@@ -20,20 +20,20 @@
"import nglview"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Crystallographic point groups"
 
},
 
"cell_type": "code",
"metadata": {},
"source": [
"## Crystallographic point groups"
 
},
 
"cell_type": "code",
"execution_count": 3,
"metadata": {},
 
 
{
"name": "stdout",
"output_type": "stream",
"text": [
"14 P 21/c\n",
......@@ -158,12 +158,18 @@
"\n",
" # getting symmetry datasets for both crystals\n",
" cryst_a = spglib.get_symmetry_dataset(ase_to_spgcell(ase_atoms=a), symprec=1e-5, angle_tolerance=-1.0, hall_number=0)\n",
" cryst_b = spglib.get_symmetry_dataset(ase_to_spgcell(ase_atoms=b), symprec=1e-5, angle_tolerance=-1.0, hall_number=0)\n",
"\n",
" samecell = np.allclose(cryst_a['std_lattice'], cryst_b['std_lattice'], atol=1e-5)\n",
" samecell = np.allclose(cryst_a['std_lattice'], cryst_b['std_lattice'], atol=1e-5)\n",
" samenatoms = len(cryst_a['std_positions']) == len(cryst_b['std_positions'])\n",
" samespg = cryst_a['number'] == cryst_b['number']\n",
" \n",
" def test_rotations_translations(cryst_a, cryst_b, repeat):\n",
" cell = cryst_a['std_lattice']\n",
" pristine = crystal('Mg', [(0, 0., 0.)], \n",
" spacegroup=int(cryst_a['number']),\n",
" cellpar=[cell[0]/repeat[0], cell[1]/repeat[1], cell[2]/repeat[2]]).repeat(repeat)\n",
"\n",
" sym_set_p = spglib.get_symmetry_dataset(ase_to_spgcell(ase_atoms=pristine), symprec=1e-5,\n",
" angle_tolerance=-1.0, hall_number=0)\n",
"\n",
......
{
"cells": [
{
"cell_type": "code",
"execution_count": 10,
"metadata": {},
"outputs": [],
"source": [
"import numpy as np\n",
"from matplotlib.patches import Rectangle\n",
"import matplotlib.pyplot as plt"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Theoretical background\n",
"\n",
"$\\Psi_k = \\frac{1}{\\sqrt{N}} \\sum_j e^{(j\\,k\\cdot r_j)} \\, \\phi_j = \\frac{1}{\\sqrt{N}} \\sum_j c_k(r_j) \\, \\phi_j$\n",
"\n",
"Notation:\n",
"$[\\,]_{nm}$ = matrix of dimensions $n\\times m$\n",
"\n",
"- h = $[\\phi_0]_{nn}$\n",
"- t = $[\\phi_{+1}]_{mnn}, \\ m=1$ for first nn hopping\n",
"\n",
"For first nn:\n",
"\n",
"- $c(k) = e^{(j\\,k\\cdot R)} \\, ,k=(0,0,0)...(2\\pi,0,0) \\, , R=(1,0,0) $\n",
"\n",
"- $[h(k)]_{nn} = [h]_{nn} + c(k) \\cdot [t]_{0nn} + (c(k) \\cdot [t]_{0nn})^H$\n",
"\n",
"- $E(k)_n=eigvalsh([h(k)]_{nn})$"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"def bands(h,t,K):\n",
" '''\n",
" input:\n",
" h = [\\phi_0]_nn\n",
" t = [\\phi_1]_mnn \n",
" variables:\n",
" \n",
" '''\n",
" kpts = np.linspace(0,K,300)\n",
" E = np.zeros((len(kpts),len(h)))\n",
" R = [1,0,0]\n",
" for k, kpt in enumerate(kpts):\n",
" c_k = np.exp(1j*2*np.pi*np.dot(R,[kpt,0,0]))\n",
" h_k = h + np.sum(c_k*t,axis=0) + np.conj(np.sum(c_k*t,axis=0))\n",
" E[k] = np.linalg.eigvalsh(h_k)\n",
" return kpts,E"
]
},
{
"cell_type": "code",
"execution_count": 3,
"metadata": {},
"outputs": [],
"source": [
"def make_ht(e,tau):\n",
" dim = e.ndim\n",
" if dim>0:\n",
" dim = len(e)\n",
" h = np.zeros((dim,dim),complex)\n",
" t = np.zeros((dim,dim),complex)\n",
" h.flat[::dim+1]=e\n",
" h.flat[1::dim+1]=tau[0]\n",
" h.flat[dim::dim+1]=np.conj(tau[0])\n",
" t[-1,0]=tau[1]\n",
" else:\n",
" h = np.array(e).reshape(1,1)\n",
" t = np.array(tau).reshape(1,1)\n",
" return h,np.expand_dims(t,0)"
]
},
{
"cell_type": "code",
"execution_count": 4,
"metadata": {},
"outputs": [],
"source": [
"def visulize(ax,h,t,replica=5):\n",
" \n",
" import matplotlib.cm as cm\n",
" colors = cm.hot(np.diag(h).real)\n",
" colors = np.tile(colors,(replica,1))\n",
" \n",
" dim = len(h)\n",
" if dim>1:\n",
" uc = np.arange(dim)*1/abs(h[0,1].real)\n",
" colors = cm.hot(np.diag(h).real)\n",
" colors = np.tile(colors,(replica,1))\n",
" a = 1/abs(t[0,-1,0].real)+1/abs(h[0,1].real)\n",
" atoms = [uc[i]+(j*a) for j in range(replica) for i in range(dim)]\n",
" else:\n",
" uc = 0\n",
" a = 1/abs(t[0,-1,0].real)\n",
" atoms = [uc+(j*a) for j in range(replica)]\n",
" rect = Rectangle((-1/abs(2*t[0,-1,0].real),-0.25),a,0.5,\n",
" linewidth=1,edgecolor='r',facecolor='none')\n",
" ax.add_patch(rect)\n",
" ax.set_ylim((-1,1))\n",
" ax.scatter(atoms,np.zeros(dim*5),100,c=colors)"
]
},
{
"cell_type": "markdown",
"metadata": {},
"source": [
"## Do not run\n",
"\n",
"example 0:\n",
"\n",
" 0.1 0.1 \n",
"... | x | x | x | ...\n",
" \n",
"tau=np.array((0.2)), 0.2 = inter-cell hopping term <br>\n",
"e=np.array((0.1)), 0.1 = energy of atom <br>\n",
"\n",
"example 1:\n",
"\n",
" 0.2 0.1 0.2 0.1 0.2 \n",
"... | x x | x x | x x |...\n",
" \n",
"tau=np.array((0.2,0.1)) 0.2 = intra-cell hopping term, 0.1 = inter-cell hopping term <br>\n",
"e=np.array((0.1,0.1)) 0.1 = energy of atom , 0.1 = energy of atom <br>"
]
},
{
"cell_type": "code",
"execution_count": 73,
"metadata": {},
"outputs": [],
"source": [
"tau = np.array((0.00005,-0.2))\n",
"e = np.array((-0.1,-0.2))\n",
"h, t = make_ht(e,tau)\n",
"kpts,E = bands(h,t,1)"
]
},
%% Cell type:code id: tags:
``` python
import numpy as np
from matplotlib.patches import Rectangle
import matplotlib.pyplot as plt
```
%% Cell type:markdown id: tags:
## Theoretical background
$\Psi_k = \frac{1}{\sqrt{N}} \sum_j e^{(j\,k\cdot r_j)} \, \phi_j = \frac{1}{\sqrt{N}} \sum_j c_k(r_j) \, \phi_j$
Notation:
$[\,]_{nm}$ = matrix of dimensions $n\times m$
- h = $[\phi_0]_{nn}$
- t = $[\phi_{+1}]_{mnn}, \ m=1$ for first nn hopping
For first nn:
- $c(k) = e^{(j\,k\cdot R)} \, ,k=(0,0,0)...(2\pi,0,0) \, , R=(1,0,0) $
- $[h(k)]_{nn} = [h]_{nn} + c(k) \cdot [t]_{0nn} + (c(k) \cdot [t]_{0nn})^H$
- $E(k)_n=eigvalsh([h(k)]_{nn})$
%% Cell type:code id: tags:
``` python
def bands(h,t,K):
'''
input:
h = [\phi_0]_nn
t = [\phi_1]_mnn
variables:
'''
kpts = np.linspace(0,K,300)
E = np.zeros((len(kpts),len(h)))
R = [1,0,0]
for k, kpt in enumerate(kpts):
c_k = np.exp(1j*2*np.pi*np.dot(R,[kpt,0,0]))
h_k = h + np.sum(c_k*t,axis=0) + np.conj(np.sum(c_k*t,axis=0))
E[k] = np.linalg.eigvalsh(h_k)
return kpts,E
```
%% Cell type:code id: tags:
``` python
def make_ht(e,tau):
dim = e.ndim
if dim>0:
dim = len(e)
h = np.zeros((dim,dim),complex)
t = np.zeros((dim,dim),complex)
h.flat[::dim+1]=e
h.flat[1::dim+1]=tau[0]
h.flat[dim::dim+1]=np.conj(tau[0])
t[-1,0]=tau[1]
else:
h = np.array(e).reshape(1,1)
t = np.array(tau).reshape(1,1)
return h,np.expand_dims(t,0)
```
%% Cell type:code id: tags:
``` python
def visulize(ax,h,t,replica=5):
import matplotlib.cm as cm
colors = cm.hot(np.diag(h).real)
colors = np.tile(colors,(replica,1))
dim = len(h)
if dim>1:
uc = np.arange(dim)*1/abs(h[0,1].real)
colors = cm.hot(np.diag(h).real)
colors = np.tile(colors,(replica,1))
a = 1/abs(t[0,-1,0].real)+1/abs(h[0,1].real)
atoms = [uc[i]+(j*a) for j in range(replica) for i in range(dim)]
else:
uc = 0
a = 1/abs(t[0,-1,0].real)
atoms = [uc+(j*a) for j in range(replica)]
rect = Rectangle((-1/abs(2*t[0,-1,0].real),-0.25),a,0.5,
linewidth=1,edgecolor='r',facecolor='none')
ax.add_patch(rect)
ax.set_ylim((-1,1))
ax.scatter(atoms,np.zeros(dim*5),100,c=colors)
```
%% Cell type:markdown id: tags:
## Do not run
example 0:
0.1 0.1
... | x | x | x | ...
tau=np.array((0.2)), 0.2 = inter-cell hopping term <br>
e=np.array((0.1)), 0.1 = energy of atom <br>
example 1:
0.2 0.1 0.2 0.1 0.2
... | x x | x x | x x |...
tau=np.array((0.2,0.1)) 0.2 = intra-cell hopping term, 0.1 = inter-cell hopping term <br>
e=np.array((0.1,0.1)) 0.1 = energy of atom , 0.1 = energy of atom <br>
%% Cell type:code id: tags:
``` python
tau = np.array((0.00005,-0.2))
e = np.array((-0.1,-0.2))
h, t = make_ht(e,tau)
kpts,E = bands(h,t,1)
```
%% Cell type:code id: tags:
``` python
fig, axs = plt.subplots(1,2,figsize=(15,5))
visulize(axs[0],h,t)
axs[1].plot(kpts,E)
```
%%%% Output: execute_result
[<matplotlib.lines.Line2D at 0x7f6584052ac8>,
<matplotlib.lines.Line2D at 0x7f658405b390>]
%%%% Output: display_data
![]()
%% Cell type:code id: tags:
``` python
one hopping term has to be nearly zero I guess.
```
<UPF version="2.0.1">
<PP_INFO>
Generated using FHI98PP, converted with fhi2upf.x v.5.0.2
Origin: Abinit web site
Date: 08-Sep-2012 (PG)
Pseudopotential type: SL
Element: Si
Functional: PBE
Suggested minimum cutoff for wavefunctions: 0. Ry
Suggested minimum cutoff for charge density: 0. Ry
The Pseudo was generated with a Scalar-Relativistic Calculation
L component and cutoff radius for Local Potential: 2 0.0000
Valence configuration:
nl pn l occ Rcut Rcut US E pseu
3s 3 0 2.00 0.000 0.000 0.000000
3p 3 1 2.00 0.000 0.000 0.000000
3d 3 2 0.00 0.000 0.000 0.000000
4f 4 3 0.00 0.000 0.000 0.000000
Generation configuration: not available.
Comment:
silicon, fhi98PP : Trouiller-Martins-type, GGA Perdew/Burke/Ernzerhof (1996), l=
</PP_INFO>
<!-- -->
<!-- END OF HUMAN READABLE SECTION -->
<!-- -->
<PP_HEADER generated="Generated using FHI98PP, converted with fhi2upf.x v.5.0.2"
author="unknown"
date="unknown"
comment="silicon, fhi98PP : Trouiller-Martins-type, GGA Perdew/Burke/Ernzerhof (1996), l="
element="Si"
pseudo_type="SL"
relativistic="scalar"
is_ultrasoft="F"
is_paw="F"
is_coulomb="F"
has_so="F"
has_wfc="F"
has_gipaw="F"
paw_as_gipaw="F"
core_correction="F"
functional="PBE"
z_valence="4.000000000000000E+000"
total_psenergy="0.000000000000000E+000"
wfc_cutoff="0.000000000000000E+000"
rho_cutoff="0.000000000000000E+000"
l_max="3"
l_max_rho="0"
l_local="2"
mesh_size="495"
number_of_wfc="4"
number_of_proj="3"/>
<PP_MESH dx="2.439988682353512E-002" mesh="495" xmin="-5.075173815233830E+000" rmax="7.665485521531100E+001"
zmesh="1.400000000000000E+001">
<PP_R type="real" size="495" columns="4">
4.464285714285700E-004 4.574553571428600E-004 4.687545044642900E-004 4.803327407245500E-004
4.921969594204500E-004 5.043542243181400E-004 5.168117736587900E-004 5.295770244681700E-004
5.426575769725300E-004 5.560612191237500E-004 5.697959312361100E-004 5.838698907376400E-004
5.982914770388599E-004 6.130692765217200E-004 6.282120876518001E-004 6.437289262168000E-004
6.596290306943600E-004 6.759218677525100E-004 6.926171378860000E-004 7.097247811917800E-004
7.272549832872200E-004 7.452181813744100E-004 7.636250704543600E-004 7.824866096945800E-004
8.018140289540400E-004 8.216188354692000E-004 8.419128207052900E-004 8.627080673767100E-004
8.840169566409200E-004 9.058521754699501E-004 9.282267242040600E-004 9.511539242919000E-004
9.746474262219100E-004 9.987212176495899E-004 1.023389631725500E-003 1.048667355629200E-003
1.074569439313200E-003 1.101111304464200E-003 1.128308753684500E-003 1.156177979900500E-003
1.184735576004000E-003 1.213998544731300E-003 1.243984308786200E-003 1.274710721213200E-003
1.306196076027200E-003 1.338459119105100E-003 1.371519059347000E-003 1.405395580112800E-003
1.440108850941600E-003 1.475679539559900E-003 1.512128824187000E-003 1.549478406144400E-003
1.587750522776200E-003 1.626967960688800E-003 1.667154069317800E-003 1.708332774829900E-003
1.750528594368200E-003 1.793766650649100E-003 1.838072686920100E-003 1.883473082287100E-003
1.929994867419600E-003 1.977665740644800E-003 2.026514084438800E-003 2.076568982324400E-003
2.127860236187800E-003 2.180418384021600E-003 2.234274718107000E-003 2.289461303644200E-003
2.346010997844200E-003 2.403957469491000E-003 2.463335218987400E-003 2.524179598896400E-003
2.586526834989100E-003 2.650414047813400E-003 2.715879274794400E-003 2.782961492881800E-003
2.851700641756000E-003 2.922137647607300E-003 2.994314447503200E-003 3.068274014356600E-003
3.144060382511200E-003 3.221718673959200E-003 3.301295125206000E-003 3.382837114798600E-003
3.466393191534100E-003 3.552013103365000E-003 3.639747827018100E-003 3.729649598345500E-003
3.821771943424600E-003 3.916169710427200E-003 4.012899102274700E-003 4.112017710100900E-003
4.213584547540400E-003 4.317660085864700E-003 4.424306289985500E-003 4.533586655348200E-003
4.645566245735300E-003 4.760311732004900E-003 4.877891431785400E-003 4.998375350150500E-003
5.121835221299300E-003 5.248344551265400E-003 5.377978661681600E-003 5.510814734625100E-003
5.646931858570400E-003 5.786411075477100E-003 5.929335429041400E-003 6.075790014138700E-003
6.225862027487900E-003 6.379640819566900E-003 6.537217947810200E-003 6.698687231121100E-003
6.864144805729800E-003 7.033689182431300E-003 7.207421305237300E-003 7.385444611476700E-003
7.567865093380200E-003 7.754791361186700E-003 7.946334707808001E-003 8.142609175090800E-003
8.343731621715599E-003 8.549821792771899E-003 8.761002391053400E-003 8.977399150112400E-003
9.199140909120201E-003 9.426359689575500E-003 9.659190773908000E-003 9.897772786023501E-003
1.014224777383800E-002 1.039276129385200E-002 1.064946249781000E-002 1.091250422150600E-002
1.118204307577700E-002 1.145823953974900E-002 1.174125805638100E-002 1.203126713037300E-002
1.232843942849400E-002 1.263295188237700E-002 1.294498579387200E-002 1.326472694298100E-002
1.359236569847200E-002 1.392809713122500E-002 1.427212113036600E-002 1.462464252228600E-002
1.498587119258600E-002 1.535602221104300E-002 1.573531595965600E-002 1.612397826386000E-002
1.652224052697700E-002 1.693033986799300E-002 1.734851926273300E-002 1.777702768852200E-002
1.821612027242900E-002 1.866605844315800E-002 1.912711008670400E-002 1.959954970584500E-002
2.008365858358000E-002 2.057972495059400E-002 2.108804415687400E-002 2.160891884754900E-002
2.214265914308300E-002 2.268958282391700E-002 2.325001551966800E-002 2.382429090300400E-002
2.441275088830800E-002 2.501574583524900E-002 2.563363475738000E-002 2.626678553588700E-002
2.691557513862300E-002 2.758038984454700E-002 2.826162547370800E-002 2.895968762290800E-002
2.967499190719400E-002 3.040796420730200E-002 3.115904092322200E-002 3.192866923402600E-002
3.271730736410600E-002 3.352542485600000E-002 3.435350284994300E-002 3.520203437033600E-002
3.607152461928400E-002 3.696249127738000E-002 3.787546481193100E-002 3.881098879278600E-002
3.976962021596800E-002 4.075192983530200E-002 4.175850250223400E-002 4.278993751403900E-002
4.384684897063600E-002 4.492986614021100E-002 4.603963383387400E-002 4.717681278957100E-002
4.834208006547300E-002 4.953612944309000E-002 5.075967184033500E-002 5.201343573479100E-002
5.329816759744000E-002 5.461463233709700E-002 5.596361375582300E-002 5.734591501559200E-002
5.876235911647700E-002 6.021378938665400E-002 6.170106998450500E-002 6.322508641312199E-002
6.478674604752600E-002 6.638697867490000E-002 6.802673704817000E-002 6.970699745326001E-002
7.142876029035500E-002 7.319305066952700E-002 7.500091902106400E-002 7.685344172088500E-002
7.875172173139000E-002 8.069688925815600E-002 8.269010242283199E-002 8.473254795267600E-002
8.682544188710700E-002 8.897003030171900E-002 9.116759005017100E-002 9.341942952441000E-002
9.572688943366300E-002 9.809134360267500E-002 1.005141997896600E-001 1.029969005244700E-001
1.055409239674200E-001 1.081477847894200E-001 1.108190350737100E-001 1.135562652400300E-001
1.163611049914600E-001 1.192352242847500E-001 1.221803343245900E-001 1.251981885824000E-001
1.282905838403900E-001 1.314593612612500E-001 1.347064074844000E-001 1.380336557492600E-001
1.414430870462700E-001 1.449367312963100E-001 1.485166685593300E-001 1.521850302727500E-001
1.559440005204800E-001 1.597958173333400E-001 1.637427740214700E-001 1.677872205398000E-001
1.719315648871400E-001 1.761782745398500E-001 1.805298779209800E-001 1.849889659056300E-001
1.895581933635000E-001 1.942402807395800E-001 1.990380156738500E-001 2.039542546609900E-001
2.089919247511200E-001 2.141540252924700E-001 2.194436297171900E-001 2.248638873712100E-001
2.304180253892800E-001 2.361093506163900E-001 2.419412515766200E-001 2.479172004905600E-001
2.540407553426800E-001 2.603155619996400E-001 2.667453563810300E-001 2.733339666836400E-001
2.800853156607300E-001 2.870034229575500E-001 2.940924075046000E-001 3.013564899699700E-001
3.087999952722200E-001 3.164273551554500E-001 3.242431108277900E-001 3.322519156652300E-001
3.404585379821600E-001 3.488678638703200E-001 3.574849001079200E-001 3.663147771405900E-001
3.753627521359600E-001 3.846342121137200E-001 3.941346771529300E-001 4.038698036786000E-001
4.138453878294600E-001 4.240673689088500E-001 4.345418329209000E-001 4.452750161940500E-001
4.562733090940400E-001 4.675432598286600E-001 4.790915783464300E-001 4.909251403315900E-001
5.030509912977800E-001 5.154763507828301E-001 5.282086166471700E-001 5.412553694783500E-001
5.546243771044700E-001 5.683235992189500E-001 5.823611921196600E-001 5.967455135650100E-001
6.114851277500700E-001 6.265888104055000E-001 6.420655540225100E-001 6.579245732068700E-001
6.741753101650800E-001 6.908274403261500E-001 7.078908781022100E-001 7.253757827913300E-001
7.432925646262800E-001 7.616518909725500E-001 7.804646926795700E-001 7.997421705887600E-001
8.194958022023000E-001 8.397373485167000E-001 8.604788610250600E-001 8.817326888923800E-001
9.035114863080200E-001 9.258282200198300E-001 9.486961770543200E-001 9.721289726275600E-001
9.961405582514600E-001 1.020745230040300E+000 1.045957637222300E+000 1.071792790861700E+000
1.098266072795900E+000 1.125393244794000E+000 1.153190457940400E+000 1.181674262251500E+000
1.210861616529100E+000 1.240769898457400E+000 1.271416914949300E+000 1.302820912748600E+000
1.335000589293500E+000 1.367975103849000E+000 1.401764088914100E+000 1.436387661910300E+000
1.471866437159400E+000 1.508221538157300E+000 1.545474610149800E+000 1.583647833020500E+000
1.622763934496100E+000 1.662846203678100E+000 1.703918504909000E+000 1.746005291980200E+000
1.789131622692100E+000 1.833323173772600E+000 1.878606256164800E+000 1.925007830692100E+000
1.972555524110200E+000 2.021277645555700E+000 2.071203203400900E+000 2.122361922524900E+000
2.174784262011300E+000 2.228501433283000E+000 2.283545418685100E+000 2.339948990526600E+000
2.397745730592600E+000 2.456970050138200E+000 2.517657210376600E+000 2.579843343472900E+000
2.643565474056700E+000 2.708861541265900E+000 2.775770421335200E+000 2.844331950742200E+000
2.914586949925500E+000 2.986577247588700E+000 3.060345705604100E+000 3.135936244532500E+000
3.213393869772500E+000 3.292764698355800E+000 3.374095986405200E+000 3.457436157269400E+000
3.542834830354000E+000 3.630342850663700E+000 3.720012319075100E+000 3.811896623356300E+000
3.906050469953200E+000 4.002529916561000E+000 4.101392405500100E+000 4.202696797915900E+000
4.306503408824500E+000 4.412874043022400E+000 4.521872031885100E+000 4.633562271072600E+000
4.748011259168100E+000 4.865287137269600E+000 4.985459729560200E+000 5.108600584880300E+000
5.234783019326800E+000 5.364082159904200E+000 5.496574989253800E+000 5.632340391488400E+000
5.771459199158200E+000 5.914014241377400E+000 6.060090393139400E+000 6.209774625849900E+000