To receive notifications about scheduled maintenance, please subscribe to the mailing-list gitlab-operations@sympa.ethz.ch. You can subscribe to the mailing-list at https://sympa.ethz.ch

UFO-PVK-Skript_Chemie-AC.tex 39.6 KB
Newer Older
1
2
3
4
\input{latex-include/preamble.tex}
\input{latex-include/chemicalMacros.tex}
\input{latex-include/lstsetup.tex}

5
6
7
8
9
\cmt{
 TODO
  - Lewis
  - Komplexe
  - MO
Alexander Schoch's avatar
Alexander Schoch committed
10
	- reaktionen, ausgedeutscht
11
12
13
 }
 

14
15
16
17
18
19
20

%change title
\title{Chemie II PVK Skript \\
        \large Teil Anorganische Chemie, Atombau und Bindung}



Alexander Schoch's avatar
Alexander Schoch committed
21
\date{Version: \today}
Alexander Schoch's avatar
Alexander Schoch committed
22
\author{Alexander Schoch, \href{mailto:schochal@student.ethz.ch}{schochal@student.ethz.ch} \\  Asbjoern Rasmussen, \href{mailto:rasmussa@student.ethz.ch}{rasmussa@student.ethz.ch}}
23
24
25
26
27
28
29

\begin{document}
\pagenumbering{gobble} 

\maketitle

\thispagestyle{fancy}
Alexander Schoch's avatar
Alexander Schoch committed
30
31
32
33
34
%\vspace*{-1.3cm}\begin{center} \large \setstretch{1.1} 
%Asbjoern Rasmussen, Alexander Schoch\\
%\vspace*{0.3cm}
%\href{mailto:rasmussa@student.ethz.ch}{\textit{rasmussa@student.ethz.ch}}, \href{mailto:schochal@student.ethz.ch}{\textit{schochal@student.ethz.ch}}
%\end{center}
35

Alexander Schoch's avatar
Alexander Schoch committed
36
\tableofcontents
37
38

  \vspace*{1.2cm} \noindent \textbf{Disclaimer:} %really change this word m8
39
 Dieses Skript und alle weiteren Unterlagen von diesem Pr\"ufungs Vorbereitungs Kurs sind keine offiziellen Unterlagen und haben keinen Anspruch auf Richtigkeit oder Vollst\"andigkeit.
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
 
 
\vspace*{\fill} \begin{flushleft}

%%%%%%%%%%%   DATE   %%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

Z\"urich, 8 April 2020
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%
%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\end{flushleft}
\newpage

%%%%%%%%%%%%%%%%%%%  END OF TITLE PAGE   %%%%%%%%%%%%%%%%%%%%%%%%
%\thispagestyle{plain}
\pagenumbering{Roman}
\setcounter{page}{1}


%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%%

\newpage


\newpage
\pagenumbering{arabic}
\setcounter{page}{1}

\section{Trends im Periodensystem}

70
In vielen alten Pr\"ufungen und in den \"ubungen 3,4,5 kommen Fragen zu verschiedenen Verhalten von Atomen oder spezifischen Molek\"ulen. Hier ist es besonders n\"utzlich die Trends in im Periodensystem auswendig zu lernen oder herleiten zu k\"onnen.
71
72
73
74


\begin{figure}[H]
    \centering
75
    \includegraphics[width=0.95\linewidth]{Diagrams/TrendPSE.pdf}
76
77
78
79
80
    \caption{Trends in Periodensystem mit Merkhilfen}
    \label{fig:Trends}
\end{figure}


81
82
\paragraph{Electronegativit\"at}
Beschreibt wie sehr ein Atom Elektronen zu sich zieht. Sauerstoff und Fluor sind sehr elektronegativ, wobei Fluor das st\"arkste ist. Der \textbf{Metallcharakter} und die \textbf{Basizit\"at des Oxids} verhalten sich entgegen der Elektronegatvit\"at.
83

84
\paragraph{Erste Isonisationsenergie} Beschreibt die Energie, welche n\"otig ist um dem Atom im ungeladenen Grundzustand ein Elektron zu entreissen. $\ce{A ->[I_V] A+ + e-}$. \cmt{\textbf{Falls dabei eine leere, volle oder halbvolle Besetztung der Schale erreicht wird, ist dies energetisch vorteilhaft} und die erste Ionisierungsenergie ist deutlich tiefer. Beispiel: Sauerstoff hat eine geringere erste Ionisierungsenergie als Stickstoff, da Sauerstoff nach der Ionisierung eine halbvolle 2p Schale hat.}
85
86
87

\begin{figure}[H]
    \centering
88
    \includegraphics[width=5cm,scale=0.5]{Diagrams/Orbital_Boxes_Trends.pdf}
89
90
\end{figure}

91
\paragraph{S\"aurest\"arke \ce{HXO_n}} Zwei Faktoren beeinflussen die S\"aurest\"arken der Oxos\"auren. Der erste Faktor ist die Anzahl Sauerstoffe, welche an das Zentralatom gebunden sind (Grund: Resonanz und zus\"atzlicher Elektronenzug). Der zweite Faktor ist wie elektronegativ das Zentralatom ist (Grund: zus\"atzlicher Elektronenzug).
92

93
\paragraph{Atomradius} Helium ist das kleinste Atom, da es am wenigsten belegte Orbitale hat und die Orbitale sind m\"oglichst voll belegt.
94

95
\paragraph{Elektronenaffinit\"at} Beschreibt die Energie, welche freigesetzt wird, wenn das Atom im neutralen Grundzustand ein Elektron aufnimmt $\ce{A + e- -> A- }$. \cmt{Hier gilt wie bei der ersten Ionisierungsenergie, dass halbvolle und volle Schalen energetisch vorteilhaft sind. Beispiel: Fluor ist sehr elekroaffin, da eine volle 2p Schale erreicht wird, wenn ein Elektron aufgenommen wird.}
96
97
\begin{figure}[H]
    \centering
98
    \includegraphics[width=5cm,scale=0.5]{Diagrams/Orbital_Boxes_Trends_Fluor.pdf}
99
100
\end{figure}

101
\paragraph{S\"aurest\"arke \ce{HX}} Die S\"aurest\"arke in der gleichen Gruppe nimmt zu mit steigender Zentralatomgr\"osse, da die \ce{H-X} Bindung durch den steigenden Abstand zwischen den beiden Atomen schw\"acher wird. \ce{HF} ist eine schwache S\"aure (Pks$=3.1$),  \ce{HCl} ist eine starke S\"aure (Pks$=-6.0$). Die S\"aurest\"arke nimmt in der gleichen Perioden zu mit steigender Elektronegativt\"at: Pks(\ce{H2O})$=14$, Pks(\ce{HF})$=3.1$.
102
103
104



105
\paragraph{St\"arke des Oxidationsmittels} Lithium ist das st\"arkste Reduktionsmittel/das schw\"achste Oxidationsmittel. Fluor ist das st\"arkste Oxidationsmittel/das schw\"achste Reduktionsmittel. Der Trend ist weniger robust als z.B. die Elektonegativit\"at. Wichtig ist dass man versteht, dass durch Aufnahme (zum Beispiel bei Fluor) oder Abgabe (zum Beispiel bei Lithium) von Elektronen eine Edelgaskonfiguration erreicht werden kann und dies sehr Vorteilhaft ist.
106

107
\paragraph{Ionenradien} Ionenradien nehmen stark zu bei steigender negativer Ladung, w\"ahrend die Atomradien auch einen kleinen(!) Einfluss haben. Zum Beispiel ist \ce{Ca^{2+}} gleich gross wie \ce{Na+} (\SI{100e-12}{\meter} vs. \SI{102e-12}{\meter}) obwohl Calcium eine Periode tiefer liegt und im Grundzustand fast doppelt so viele Elektronen hat.
108
109
110

\subsection{Aufgaben}

111
\"uberpr\"ufen Sie mit Hilfe des Periodensystems die folgenden Aussagen. Klassifizieren Sie diese Aussagen als richtig oder falsch.
112
113
114
115
116
117
118
\begin{longtable}{rll}
    \textbf{Nr.} & \textbf{Aussage} & \textbf{Richtig / Falsch} \\
    1& Natrium ist ein starkes Oxidationsmittel.  & \\
    2& Die Atomradien nehmen in der Reihenfolge I $>$ Br $>$ Cl $>$ He ab. & \\
    3& Die Pks Werte nehmen in der Reihenfolge $\ce{CH4} < \ce{NH3} < \ce{H2O}$ zu & \\
    4& Die Ionenradien nehmen in der Reihenfolge: $\ce{Li+} < \ce{B-} < \ce{O^{2-}}$ zu & \\
    5& Die erste Ionisationsenergie nimmt wie folgt ab: $\ce{Rn} > \ce{Kr} > \ce{Ne}$ & \\
119
120
    6& Die St\"arke der S\"auren nehmen in der Reihenfolge $\ce{H2SO4} > \ce{H3PO4} > \ce{H4SiO4}$ zu & \\
    7& Die Elektronenaffinit\"aten nehmen folgerndermassen ab: $\ce{Cl} > \ce{Te} > \ce{Y}$ & \\
121
122
123
    8& In \ce{OF2} hat Sauerstoff die Oxidationszahl -II & \\
    9& \ce{He+} kann von jedem anderen neutralen Atom ein Elektron aufnehmen& \\
    10& \ce{F2} reagiert mit Chlorid zu Fluorid und Chlorgas (\ce{F2 + 2Cl- -> 2F- + Cl2})& \\
124
125
    11& Die St\"arke der S\"aure nimmt in folgender Reihe zu: $\ce{HF} < \ce{HBr} < \ce{HI}$& \\
    12& Die Elektronegativit\"at nimmt in folgender Reihe ab: $\ce{P} > \ce{Ge} > \ce{Rb}$& \\
126
    13& Der Atomradius sinkt in der Reihenfolge: $\ce{P} > \ce{Zn} > \ce{Rb}$& \\
127
    14& Die S\"aurest\"arken nehmen in der Reihenfolge $\ce{HClO4} > \ce{HClO3} > \ce{HClO}$ ab& \\
128
129
130
131
132
133
134
    15& Die erste Ionisierungsenergie sinkt in der Reihe $\ce{Li} > \ce{Na} > \ce{Ca}$& \\
    16& Der saure Charakter steigt in der Reihenfolge: $\ce{P4O6} > \ce{As4O6} > \ce{Sb4O6}$& \\
    17 & Sie haben sich eine Pause verdient & \\ %Should I leave this in?

\end{longtable}

%move this to the end
135
L\"osungen: 1n,2y,3y,4n,5n,6y,7y,8n,9y,10y,11y,12y,13n,14n, 15n, 16y %please correct/verify this 
136
137
138
139
140
141
142


\section{Atombau}
\subsection{Quantenzahlen}
Es gibt 4 wichtige Quantenzahlen, welche die Orbitale beschreiben:

\begin{itemize}
143
144
145
146
    \item Die Hauptquantenzahl $n$ entspricht der Periode
    \item Die Nebenquantenzahl $l$ beschreibt die Form/Art der Orbitale \\
    $l = 0,1,2,..., n-1$, wobei $0=$ s, $1=$ p, $2=$ d, $3=$ f, ...
    \item Magnetische Drehimpulszahl $m$ beschreibt die Orientierung der Orbitale\\
147
148
    $m = -l, -l + 1, ..., l-1, l$. Es gibt also eine s-Orbital Orientierung, drei p-Orbital Orientierungen (p$_\mathrm{x}$, p$_\mathrm{y}$, p$_\mathrm{z}$), f\"unf  d-Orbital Orientierungen, sieben f-Orbital Orientierungen, etc.
    \item Spinquantenzahl $s$. F\"ur das Elektron ist $s = \pm0.5$
149
150
151
152
\end{itemize}

Die energetische Reihenfolge der Orbitale ist wie folgt: \\
1s, 2s, 2p, 3s, 3p, 4s, 3d, 4p, 5s, 4d, 5p, 6s, 4f, 5d, 6p, etc.\\
153
Aber man muss das nicht auswendig lernen, wenn man sein eigenes Periodensystem mitbringen darf \cite{Nist_PSE}. Falls man doch die Orbital Reihenfolge selber k\"onnen muss, ist die Schachbrett Merkhilfe (Figure \ref{Chess}) sehr n\"utzlich.
154
155
156
157
158
159
160


\begin{figure}[H]
    \centering
    
    \includegraphics[width=0.25\linewidth]{Diagrams/Screenshot from 2020-05-07 17-14-09.png}
   
161
    \caption{ Aufbau on a Chessboard \cite{Chessboard}, die Elektronen werden von unter nach oben in die Orbitale eingef\"ullt. }
162
163
164
165
    \label{Chess}
\end{figure}

\subsection{Pauli Prinzip und Hund'sche Regel}
166
167
Elektronen werden immer zuerst in die energetisch tieferen Orbitale eingef\"ullt.\par\smallskip
Gibt es mehrere Orbitale mit gleicher Energie, werden die Elektronen zuerst \textbf{einzeln} in die Orbitale eingesetzt, falls Elektronen \"ubrig sind, f\"ullt man die Elektronen mit entgegengesetztem Spin in die halbvollen Orbitale.\par\smallskip
168
Dies wird wiederholt, bis keine Elektronen \"ubrig sind. Falls ungepaarte Elektronen vorkommen, so ist diese Elektronenkonfiguration \textbf{paramagnetisch}. Falls nur gepaarte Elektronen vorkommen, so ist die Elektronenkonfiguration \textbf{diamagnatisch}.
169
170
171

\begin{figure}[H]
    \centering
172
    \includegraphics[width=0.75\linewidth]{Diagrams/Elektronconfig_O.pdf}
173
    \caption{Das Pauli Prinzip und die Hund'sche Regel auf neutralen Sauerstoff angewendet. Die Anzahl Elektronen unter den Orbitalen ist die Anzahl Elektronen welche noch \"ubrig sind, nachdem die roten Elektronen eingef\"ugt wurden.}
174
175
176
177
    \label{fig:Hundsche_O}
\end{figure}

\subsection{Elektronenkonfiguration}
178
Das bestimmen der Elektronenkonfiguration verl\"auft immer nach gleichem Schema:
179
\begin{enumerate}
180
    \item Element im Periodensystem finden
181
    \item Horizontal so viele Felder laufen wie die Ladungszahl, f\"ur negative Ladungen nach rechts, f\"ur positive Ladungen nach links, ohne Ladung keine Felder laufen.
182
183
    \item Ist das Atom ungeladen und kann eine d$^5$ oder d$^{10}$ Konfiguration erreicht werden?
		\begin{enumerate}
184
						\item Ja: Ein Elektron aus dem Valenz s-Orbital in das d-Orbital einf\"ugen. Grund daf\"ur ist im Paragraph "Erste Ionisationsenergie" erkl\"art. 
185
186
						\item Nein: weiter
		\end{enumerate}
187
    \item Ist das Atom positiv geladen und hat ein ungef\"ulltes d-Orbital als h\"ochstes Orbital?
188
189
190
191
192
		\begin{enumerate}
			\item Ja: Alle Elektronen der s-Schale in die d-Orbitale setzten.
    	\item Nein: Die Konfiguration hinschreiben nach dem Chessboard/aus dem PSE ablesen.
		\end{enumerate}
\end{enumerate}
193
Man kann sich sehr viel Zeit sparen, wenn man die Rumpfelektronen/ nicht Valenzelektronen als die Elektronenkonfiguration des Edelgases, welches eine Periode h\"oher ist, in eckige Klammern schreibt.\par\smallskip
194
195
196
197
198
199
200
201
202
203
204
205
206
Beispiele:
\begin{equation}
	\begin{aligned}
		\ce{Fe} &= {\color{red}\ce{1s^2 2s^2 2p^6 3s^2 3p^6}}\ \ce{4s^2 3d^6} &=& {\color{red} \ce{[Ar]}}\ \ce{4s^2 3d^6} \\ 
		\ce{Ag} &= {\color{red}\ce{1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6}}\ \ce{5s^1 4d^10} &=& {\color{red}\ce{[Kr]}}\ \ce{5s^1 4d^10} \\
		\ce{Mo} &= {\color{red}\ce{1s^2 2s^2 2p^6 3s^2 3p^6 4s^2 3d^10 4p^6}}\ \ce{5s^1 4d^5} &=& {\color{red}\ce{[Kr]}}\ \ce{5s^1 4d^5} \\
		\ce{Ni^2+} &= {\color{red}\ce{1s^2 2s^2 2p^6 3s^2 3p^6}}\ \ce{4s^0 3d^8} &=& {\color{red} \ce{[Ar]}}\ \ce{4s^0 3d^8} 
				%\ce{Fe} &= \textcolor{red}{1s$^2$2s$^2$2p$^6$3s$^2$3p$^6$}4s$^2$3d$^6$ = \textcolor{red}{[Ar]}4s$^2$3d$^6$\\
				%Ag &= 1s$^2$2s$^2$2p$^6$3s$^2$3p$^6$4s$^2$3d$^{10}$4p$^6$\textcolor{red}{5s$^1$4d$^{10}$} = [Kr]\textcolor{red}{5s$^1$4d$^{10}$}\\
				%Mo &= 1s$^2$2s$^2$2p$^6$3s$^2$3p$^6$4s$^2$3d$^{10}$4p$^6$\textcolor{red}{5s$^1$4d$^{5}$} = [Kr]\textcolor{red}{5s$^1$4d$^{5}$} \\
				%\ce{Ni^{2+}} &= 1s$^2$2s$^2$2p$^6$3s$^2$3p$^6$\textcolor{red}{ (4s$^0$)3d$^8$} = [Ar]\textcolor{red}{3d$^8$}
	\end{aligned}
\end{equation}
207

208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
\subsection{Aufgaben}
Geben Sie die Elektronenkonfiguration der Folgenden Atomen und Ionen an: (Zusatz: welche sind paramagnetisch?)
\begin{longtable}{rlrl}
	\toprule
	\textbf{Nr.} & \textbf{Atom/Ion} & \textbf{Nr.} & \textbf{Atom/Ion}\\ \midrule\endhead
	1& \ce{Be} & 9 & \ce{Fe^{3+}} \\
	2& \ce{Ti} & 10  &\ce{Mo} \\
	3& \ce{Sb} &  11 &\ce{Ru^{+}} \\
	4& \ce{Br} &   12&\ce{Ti^{4+}} \\
	5& \ce{Zn^{2+}} &   13&\ce{Si} \\
	6& \ce{In+} &   14&\ce{Eu} \\
	7& \ce{Sr^{2+}} &   15&\ce{O$^{2-}$} \\
	8& \ce{Os} &   16&\ce{Cr} \\
	\bottomrule
\end{longtable}

Welches Element hat die folgende Elektronenkonfiguration?

\begin{longtable}{rlrl}
	\toprule
	\textbf{Nr.} & \textbf{Element} & \textbf{Nr.} & \textbf{Element}\\ \midrule\endhead
Alexander Schoch's avatar
Alexander Schoch committed
229
  1  & \ce{[Ne] 3s^2 3p^6} & 5  & \ce{[Ar] 4s^2} \\
230
  2  & \ce{[Ar] 4s^2 3d^10 4p^3} & 6  & \ce{[Ne] 3s^2 3p^1} \\
Alexander Schoch's avatar
Alexander Schoch committed
231
232
  3  & \ce{[Ar] 4s^2 3d^10} & 7  & \ce{[Kr] 5s^2 4d^2} \\
  4  & \ce{[Kr] 5s^2 4d^10} & 8  & \ce{1s^2} \\      
233
234
235
236
237
	\bottomrule
\end{longtable}

Geben Sie die Quantenzahlen der Valenzelektronen von Calcium im Grundzustand an. \\

238

Alexander Schoch's avatar
Alexander Schoch committed
239
Wie viele Elektronen können sich maximal in den: \ce{5f}, \ce{6s}, \ce{2p} und \ce{5d} Orbitalen aufhalten? \\
240

Alexander Schoch's avatar
Alexander Schoch committed
241
Wie viele Elektronen können maximal die Hauptquantenzahl $n= 3$ haben? (Zusatz $n=4$)
242

243
244
245
246
247
248
249
250
251
252
Lösungen: 1) \ce{[He] 2s^2 2p^1}, 2) \ce{[Ar] 4s^2 3d^2},  3) \ce{[Kr] 5s^2 4d^10 5p^3}, 4) \ce{[Ar] 4s^2 3d^10 4p^5}, 5) \ce{[Ar] 3d^10}, 6) \ce{[Kr] 5s^2 4d^10}, 7) \ce{[Kr]}, 8) \ce{[Xe] 6s^2 4f^14 5d^6}, 9) \ce{[Ar] 3d^5}, 10) \ce{[Kr] 5s^1 4d^5}, 11) \ce{[Kr] 4d^7}, 12) \ce{[Ar]}, 13) \ce{[Ne] 3s^2 3p^2}, 14) \ce{[Xe] 6s^2 4f^7}, 15) \ce{[Ne]}, 16) \ce{[Ar] 4s^1 3d^5}
\\

1) Ar, 2) As, 3) Zn, 4) Cd, 5) Ca. 6) Al, 7) Zr, 8) He \\

VE: $n=4 , l=0, m=0, s=\pm 1/2$ \\

5f$= 14$\ce{e-}, 6s$= 2$\ce{e-}, 2p$= 6$\ce{e-}, 5d$= 10$\ce{e-} \\

n$=3$: 3s $= 2\ce{e-} +$ 3p $= 6\ce{e-} +$ 3d $=10\ce{e-} = 18\ce{e-}$, n$=4$: 32\ce{e-}
253
254
255


\section{Bindungen}
256
257
\subsection{Bindungsarten}
Es gibt drei Arten von Bindungen: Ionische, Kovalente, Koordinierte.
258
\paragraph{Ionische Bindungen} entstehen wenn die zwei Bindungspartner eine \textbf{Elekrtonegativit\"atsdifferenz von mindestens 1.7} aufweisen. Dies ist genug um Elektronen des einen Atoms/Molek\"uls auf das andere zu \"ubertragen. Verbindungen, welche ionische Bindung enthalten, sind Salze. Das klassische Beispiel ist \ce{NaCl}, wobei Natrium das Kation (\ce{Na+}) ist und Chlorid das Anion (\ce{Cl-}) ist. Beide Ionen ordnen sich zusammen in einem Salzgitter an. Ionische Bindungen sind dem Kapitalismus am n\"achsten, da ein Atom/Molek\"ul viele Elektronen besitzt und sie nicht mit dem elektronenarmen Bindungspartner teilt.
259
260

\paragraph{Kovalente Bindungen}
261
 entstehen wenn zwei Bindungspartner mit weniger als 1.7 Elektronegativit\"atsunterschied binden. Dabei teilen sich die Bindungspartner ein Teil ihrer Elektronen in gemeinsamen Orbitalen. Verbindungen, welche kovalente Bindung enthalten, sind Molek\"ule. Diese Art von Bindung ist dem Kommunismus am n\"achsten.
262
263

\paragraph{Koordinierte Bindungen}
264
 entstehen, wenn ein Nichtmetall/Molek\"ul mit einem freien Elektronenpaar dieses freie Elektronenpaar einem \"ubergangsmetall \enquote{spendet}. Die Elektronegativit\"atsdifferenz sollte auch unter 1.7 sein. Dabei entsteht ein Komplex, welcher in vielen F\"allen deutlich andere Eigenschaften hat als das Metall selbst. Diese Form der Bindung ist dem Sozialismus am n\"achsten.
265

266
\section{Darstellung von Molek\"ulen}
267
268
269
270
271
Wichtige Begriffe:
\begin{itemize}
    \item \textbf{Valenz: } Gibt an wie viele Bindungen ein Atom eingehen kann\\
    Valenz = Anzahl Valenzelektronen im Atom - Anzahl nicht-bindende Elektronen\\
    Atome der zweiten Periode folgen immer der Oktett-/Edelgasregel.
272
    \item \textbf{Hypervalenz: } Gilt f\"ur Atome ab der dritten Periode (m\"oglich weil sie sehr gross sind und d-Orbitale verwenden k\"onnen). \\
273
    Hypervalente Atome haben mehr als acht Valenzelektronen.\\
274
275
    Nicht-bindende Elektronenpaare z\"ahlen auch zur Valenz.
    \item \textbf{Isoelektronisch: } Zwei oder mehr Molek\"ule sind isoelektronisch, wenn sie: \\
276
    1) die gleiche Struktur haben, 2) die gleiche Anzahl Valenzelektronen haben.\\
277
278
    \chemfig{O=C=O} und \chemfig{O=N^+=O} sind isoelektronisch.\\
    \chemfig{H_3C-CO-CH_3} und \chemfig{H_3C-N=N-CH_3} sind nicht isoelektronisch (gleiche Anzahl V\ce{e-}, aber andere Struktur).\\
279
    Molek\"ule mit ungleicher Zahl V\ce{e-} sind oftmals leicht zu erkennen, da auch ihre Struktur oft unterschiedlich ist.
280
281
282
283
\end{itemize}{}

\subsection{Lewis-Strukturmodell}

284
285
286
287
288
289
290
291
292
293
Das Lewis-Strukturmodell erlaubt uns, chemische Verbindung graphisch darzustellen. Dabei müssen folgende Regeln beachtet werden:

\begin{enumerate}
	\item Ein Atom werden mit seinem Elementsymbol dargestellt.
	\item Ein Strich zwischen zwei Atomen entspricht einer \textit{Einfachbindung} (also \textit{zwei} Elektronen).
	\item Zwei Striche entsprechen einer \textit{Doppelbindung} (also \textit{vier} Elektronen).
	\item Ein Strich bei einem Atom entspricht einem \textit{Nicht-Bindenden Elektronenpaar}.
	\item Generell erfüllen Atome aus der zweiten Periode ($n = 2$) die Oktettregel: Bei den Atomen C, N, O und F müssen immer \textit{vier} anliegende Striche gezeichnet sein, sonst ist etwas falsch.
\end{enumerate}

Alexander Schoch's avatar
Alexander Schoch committed
294
295
\begin{figure}[H]
\begin{mdframed}
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
	\begin{subfigure}[b]{0.33\linewidth}
		\centering
		\chemfig{H-C(-[2]H)(-[6]H)-H}
		\caption{Methan}
	\end{subfigure}
	\begin{subfigure}[b]{0.33\linewidth}
		\centering
		\chemfig{H-[:-60]\lewis{46,O}-[0]S(=[2]\lewis{13,O})(=[6]\lewis{57,O})-[0]\lewis{02,O}-[:-60]H}
		\caption{Schwefelsäure}
		\label{fig:h2so4}
	\end{subfigure}
	\begin{subfigure}[b]{0.32\linewidth}
		\centering
		\chemfig{*6(C?(-H)=C(-H)-C(-H)=C(-H)-C(-H)=C?(-H))}
		\caption{Benzol}
	\end{subfigure}
	\caption{Lewis-Formeln für einige Verbindungen}
Alexander Schoch's avatar
Alexander Schoch committed
313
\end{mdframed}
314
315
316
317
318
319
320
321
322
323
324
325
\end{figure}


\subsection{Oxidationszahlen}

Um die Oxidationszahl (Beispiel: S in Schwefelsäure \ce{H2SO4}, Fig. \ref{fig:h2so4}) zu ermitteln, wird nach folgendem Schema vorgegangen:

\begin{enumerate}
	\item Valenzelektronenzahl im Grundzustand bestimmen. \textcolor{blue}{\ce{3s^2 + 3p^4 = 6e-}}
	\item Für jede Bindung: 
	\begin{enumerate}
		\item Heteronukleare Bindung (unterschiedliche Atome): Alle Bindungselektronen demjenigen Atom mit der höheren Elektronegativität zuschreiben.
326
		\item Homonukleare Bindung (gleiche Atome): Gleichmässig aufteilen
327
328
329
330
	\end{enumerate}
	\textcolor{blue}{Alle Bindungs-\ce{e-} werden den Sauerstoffatomen zugeschrieben}
	\item Valenzelektronen nach der Zuteilung bestimmen. \textcolor{blue}{\ce{0e-}}
	\item Differenz = Oxidationszahl, wird mit römischen Zahlen notiert. \textcolor{blue}{\ce{6e- - 0e- = +VI}}
331
  \item Kontrolle: Die Summe der Oxidationszahl aller Atome in einer Verbindung muss der Gesamtladung entsprechen: \textcolor{blue}{$2\cdot \textrm{+I} + 4 \cdot \textrm{-II} + 1 \cdot \textrm{+VI} = 0$}
332
333
334
335
336
\end{enumerate}

Tipps:

\begin{itemize}
337
  \item F ist immer -I (ausser in \ce{F2})
338
339
340
	\item O ist meistens -II (ausser wenn mit O oder F gebunden)
	\item H ist meistens +I (ausser wenn mit H gebunden oder als Hydrid)
\end{itemize}
341

Alexander Schoch's avatar
Alexander Schoch committed
342
343
\begin{figure}[H]
\begin{mdframed}
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
  \centering
  \begin{subfigure}[b]{0.33\linewidth}
    \centering
    \chemfig{
      Cy(!{ox}{+}{I}{2})-[:-30]N(!{ox}{-}{III}{6})=[:30]C(!{ox}{+}{IV}{6})=[:30]N(!{ox}{-}{III}{2})-[:-30]Cy(!{ox}{+}{I}{6})
    }
    \caption{Dicyclohexylcarbodiimid. Cy ist ein Kohlenstoffrest.}
  \end{subfigure}
  \begin{subfigure}[b]{0.33\linewidth}
    \centering
    \chemfig{
      H(!{ox}{+}{I}{2})-[:-30]O(!{ox}{-}{I}{6})-[:30]O(!{ox}{-}{I}{2})-[:-30]H(!{ox}{+}{I}{6})
    }
    \caption{Wasserstoffperoxid\newline}
  \end{subfigure}
  \begin{subfigure}[b]{0.32\linewidth}
    \centering
    \chemfig{
      H(!{ox}{+}{I}{6})-[:30]C(!{ox}{+}{II}{6})(=[2]O(!{ox}{-}{II}{2}))-[:-30]O(!{ox}{-}{II}{6})-[:30]Mg(!{ox}{}{+II}{:-30})-[2]Br(!{ox}{-}{I}{2})
    }
    \caption{Grignard-Reagenz einer Formylgruppe}
  \end{subfigure}
  \caption{Oxidationszahlen aller Atome für einige ausgewählte Moleküle}
Alexander Schoch's avatar
Alexander Schoch committed
367
\end{mdframed}
368
369
\end{figure}

370
371
372
373
374
375
376
377
378
379
\subsection{Formalladungen}

Während für die Bestimmung der Oxidationszahlen beide Bindungselektronen dem \textit{elektronegativeren Atom} zugeordnet werden, werden für Formalladungen alle Bindungen \textit{homolytisch} (\enquote{in der Mitte}) gespalten. Falls sich die Valenzelektronenzahl im Grundzustand und nach der homolytischen Spaltung unterscheiden, tritt eine Formalladung auf.

\begin{itemize}
  \item Die Summe aller Formalladungen muss der tatsächlichen Ladung des Teilchens entpsrechen.
  \item Oftmals können Formalladungen durch Resonanz auf andere Atome verschoben oder eliminiert werden.
\end{itemize}


Alexander Schoch's avatar
Alexander Schoch committed
380
381
\begin{figure}[H]
\begin{mdframed}
382
383
384
385
386
387
388
  \begin{minipage}{0.5\linewidth}
    \centering
    \chemfig{
      \lewis{46,O}=[:30]\lewis{2,O}(-[1,0.4,,,,draw=none]\oplus)-[:-30]\lewis{026,O}(-[1,0.4,,,,draw=none]\ominus)
    }
  \end{minipage}
  \begin{minipage}{0.49\linewidth}
Alexander Schoch's avatar
Alexander Schoch committed
389
    \caption{Lewis-Formel von Ozon. Wenn alle Bindungen homolytisch gespalten werden, besitzt das linke Sauerstoffatom \ce{6e-} und ist somit formal neutral, das Mittlere erhält \ce{5e-} und ist somit formal positiv geladen und das Rechte erhält \ce{7e-} und besitzt somit eine negative Formalladung.}
390
  \end{minipage}
Alexander Schoch's avatar
Alexander Schoch committed
391
\end{mdframed}
392
393
\end{figure}

Alexander Schoch's avatar
Alexander Schoch committed
394
395
\begin{figure}[H]
\begin{mdframed}
396
  \begin{minipage}{0.5\linewidth}
Alexander Schoch's avatar
Alexander Schoch committed
397
    \caption{Lewis-Formel von Kohlenmonoxid. Nach der homolytischen Spaltung der Dreifachbindung besitzen beide Atome \ce{5e-}, was zu den eingezeichneten Formalladungen führt.}
398
399
400
401
402
403
404
  \end{minipage}
  \begin{minipage}{0.49\linewidth}
    \centering
    \chemfig{
      \lewis{4,O}(-[2,0.4,,,,draw=none]\oplus)~\lewis{0,C}(-[2,0.4,,,,draw=none]\ominus)
    }
  \end{minipage}
Alexander Schoch's avatar
Alexander Schoch committed
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
\end{mdframed}
\end{figure}

\begin{figure}[h]
\begin{mdframed}
  \begin{minipage}{0.5\linewidth}
    \centering
    \chemfig{
			\chembelow{N}{\oplus}(=[2]\lewis{13,O})(-[:-30]\lewis{26,O}H)(-[:-150]\lewis{246,O}-[6,0.3,,,,draw=none]\ominus)
    }
  \end{minipage}
  \begin{minipage}{0.49\linewidth}
    \caption{Lewis-Formel von Salpetersäure. Nach einer homolytischen Spaltung aller Bindungen besitzt das Stickstoff-Atom \ce{4e-} und ist somit positiv geladen, das linke Sauerstoffatom besitzt dann \ce{7e-} und ist somit formal negativ geladen.}
  \end{minipage}
\end{mdframed}
420
421
\end{figure}

Alexander Schoch's avatar
Alexander Schoch committed
422

423
424
425
426
427
428
\subsection{Resonanz}

Resonanz beschreibt das Konzept, dass sich $\pi$-Bindungen nicht dort befinden \textit{müssen}, wo sie in der Lewis-Formel eingezeichnet werden. Benachbarte, parallel zueinander stehende p-Orbitale bilden nämmlich $\pi$-Systeme und somit kommen die Elektronen \textit{delokalisiert} (\enquote{nicht einem besteimmten Ort zugehörig}) vor. Verschiedene Grenzformen eines Teilchens mit $\pi$-Systemen nennt man \textit{Resonanz- oder Grenzstrukturen}.\par\smallskip

Eine Molekülstruktur kann nicht einer bestimmten Grenzstruktur zugeordnet werden. Vielmehr ist sie alle Grenstrukturen gemeinsam, und das Molekül und seine Eigenschaften wird durch all seine Grenzstrukturen beschrieben.

Alexander Schoch's avatar
Alexander Schoch committed
429
430
\begin{figure}[H]
\begin{mdframed}
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
  \centering
  \begin{subfigure}[b]{0.47\linewidth}
    \centering
    \schemestart
      \chemfig{\lewis{46,O}=[:30]\lewis{2,O}(-[1,0.4,,,,draw=none]\oplus)-[:-30]\lewis{026,O}(-[1,0.4,,,,draw=none]\ominus)}
      \quad\arrow{<->}\quad
      \chemfig{\lewis{06,O}=[:150]\lewis{2,O}(-[3,0.4,,,,draw=none]\oplus)-[:-150]\lewis{426,O}(-[3,0.4,,,,draw=none]\ominus)}
    \schemestop
    \caption{Resonanzstrukturen von Ozon: Durch die Verschiebung der $\pi$-Bindung auf das linke Sauerstoffatom und des nichtbindenden Elektronenpars des formal negativ geladenen Sauerstoffatoms zu einer Doppelbindung kann die andere Grenzstruktur erreicht werden.}
  \end{subfigure}\hfill
  \begin{subfigure}[b]{0.47\linewidth}
    \centering
    \schemestart
      \chemfig{\chemabove{\lewis{4,O}}{\oplus}~\chemabove{\lewis{0,C}}{\ominus}}
      \quad\arrow{<->}\quad
      \chemfig{\lewis{35,O}=\lewis{0,C}}
    \schemestop
    \caption{Resonanzstrukturen von Kohlenmonoxid: Durch die Verschiebung einer $\pi$-Bindung auf das Sauerstoffatom wird eine weitere Resonanzstruktur erreicht werden. Beacte, dass bei C dann die Oktettregel nicht erfüllt wird und diese Resonanozstruktur also eine tiefe Gewichtung besitzt.}
  \end{subfigure}
  \caption{Durch das Verschieben von Elektronenpaaren können verschiedene Grenzstrukturen desselben Moleküls formuliert werden.}
Alexander Schoch's avatar
Alexander Schoch committed
451
\end{mdframed}
452
453
\end{figure}

Alexander Schoch's avatar
Alexander Schoch committed
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
Am folgenden Beispiel soll anhand von Chlorsäure (\ce{HClO3}) und Chloriger Säure (\ce{HClO2}) erläutert werden, wie chemische Eigenschaften durch Resonanz erklärt werden können.

\begin{figure}[H]
\begin{mdframed}
	\begin{subfigure}[b]{0.5\linewidth}
		\centering
		\schemestart
			\chemfig{\lewis{2,Cl}(=[@{7}:-150]@{8}O)(=[@{5}:-70]@{6}O)(-[@{4}:-30]@{3}\chemabove{O}{\ominus})}
		\schemestop
		\chemmove{\draw[shorten <=8pt,shorten >=2pt]
      (3).. controls +(90:5mm) and +(60:4mm).. (4);}
		\chemmove{\draw[shorten <=2pt,shorten >=2pt]
      (5).. controls +(30:5mm) and +(30:4mm).. (6);}
		\chemmove{\draw[shorten <=2pt,shorten >=2pt]
      (6).. controls +(-150:4mm) and +(-150:5mm).. (5);}
		\chemmove{\draw[shorten <=2pt,shorten >=2pt]
      (7).. controls +(-60:5mm) and +(-60:4mm).. (8);}
		\chemmove{\draw[shorten <=2pt,shorten >=2pt]
      (8).. controls +(120:4mm) and +(120:5mm).. (7);}
		\caption{Resonanzstabilisierung von Chlorsäure}
	\end{subfigure}
	\begin{subfigure}[b]{0.49\linewidth}
		\centering
		\schemestart
			\chemfig{\lewis{13,Cl}(=[@{7}:-150]@{8}O)(-[@{4}:-30]@{3}\chemabove{O}{\ominus})}
		\schemestop
		\chemmove{\draw[shorten <=8pt,shorten >=2pt]
      (3).. controls +(90:5mm) and +(60:4mm).. (4);}
		\chemmove{\draw[shorten <=2pt,shorten >=2pt]
      (7).. controls +(-60:5mm) and +(-60:4mm).. (8);}
		\chemmove{\draw[shorten <=2pt,shorten >=2pt]
      (8).. controls +(120:4mm) and +(120:5mm).. (7);}
		\caption{Resonanzstabilisierung von Chloriger Säure}
	\end{subfigure}
	\caption{Es ist sichtbar, dass das Säurerestanion der Chlorsäure, Chlorat, die negative Ladung über mehrere Sauerstoffatome verteilen kann und ist deshalt thermodynamisch stabiler als das Säurerestanion der Chlorigen Säure, Chlorit, wobei Pfeile die Verschiebung von \textit{Elektronenpaaren} beschreiben. Eine erhöhte Stabilität des Säurerestanions bedeutet gleichzeitig, dass die zugehörige Säure stärker wird: $\text{pK}_{\text{s,}\ce{HClO3}} < \text{pK}_{\text{s,}\ce{HClO2}}$}
\end{mdframed}
\end{figure}

% TODO: einkommentieren
\cmt{
494
495
\subsection{Molekülorbitale}

Alexander Schoch's avatar
Alexander Schoch committed
496
497
\begin{figure}[H]
\begin{mdframed}
498
499
\begin{minipage}{0.5\linewidth}
\centering
Alexander Schoch's avatar
Alexander Schoch committed
500
501
502
\begin{modiagram}[labels,names]
	\atom[H]{left}{
		1s = { 0; up}
503
	}
Alexander Schoch's avatar
Alexander Schoch committed
504
	\atom[H]{right}{
505
506
		1s = { 0; up},
	}
Alexander Schoch's avatar
Alexander Schoch committed
507
	\molecule[\ce{H2}]{
508
509
510
511
512
		1sMO = {.75; pair}
	}
\end{modiagram}
\end{minipage}
\begin{minipage}{0.49\linewidth}
Alexander Schoch's avatar
Alexander Schoch committed
513
514
\caption{MO-Diagramm von \ce{H2}.}
\end{minipage}
Alexander Schoch's avatar
Alexander Schoch committed
515
\end{mdframed}
Alexander Schoch's avatar
Alexander Schoch committed
516
517
\end{figure}

Alexander Schoch's avatar
Alexander Schoch committed
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
\begin{figure}[H]
\begin{mdframed}
\begin{subfigure}[b]{0.5\linewidth}
\centering
\begin{modiagram}[labels,names]
	\atom[O]{left}{
		2p = { 0; pair, up, up},
	}
	\atom[O]{right}{
		2p = { 0; pair, up, up},
	}
	\molecule[\ce{O2}]{
		2pMO = {2; pair, pair, pair, up, up},
	}
\end{modiagram}
\caption{Triplett-Sauerstoff \ce{^3O2}, paramagnetisch}
\end{subfigure}
\begin{subfigure}[b]{0.49\linewidth}
\centering
\begin{modiagram}[labels,names]
	\atom[O]{left}{
		2p = { 0; pair, up, up},
	}
	\atom[O]{right}{
		2p = { 0; pair, up, up},
	}
	\molecule[\ce{O2}]{
		2pMO = {2; pair, pair, pair, pair},
	}
\end{modiagram}
\caption{Singlett-Sauerstoff \ce{^1O2}, diamagnetisch}
\end{subfigure}
\caption{MO-Diagramme von \ce{^3O2} und \ce{^1O2}.}
\end{mdframed}
\end{figure}


\begin{figure}[H]
\begin{mdframed}
Alexander Schoch's avatar
Alexander Schoch committed
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
\begin{minipage}{0.5\linewidth}
\caption{MO-Diagramm von \ce{NO}. Durch das ungepaarte Elektron im $2\pi_y^*$-Orbital ist NO ein Radikal.}
\end{minipage}
\begin{minipage}{0.49\linewidth}
\centering
\begin{modiagram}[labels, names]
 \atom[N]{left}{
   2p = {0;up,up,up}
 }
 \atom[O]{right}{
   2p = {2;pair,up,up}
 }
 \molecule[NO]{
   2pMO  = {1.8,.4;pair,pair,pair,up} ,
 }
\end{modiagram}
573
\end{minipage}
Alexander Schoch's avatar
Alexander Schoch committed
574
\end{mdframed}
575
\end{figure}
576

Alexander Schoch's avatar
Alexander Schoch committed
577
578
579
580
581
582
583
584
585
\subsubsection{Bindungsordnung}

Mittels MO-Diagrammen kann für eine Bindung dann auch die so genannte \textit{Bindungsordnung} berechnet werden:

\begin{equation}
	\text{BO} = { n_\text{Bindend} - n_\text{Antibindend} \over 2}
\end{equation}
}

Alexander Schoch's avatar
Alexander Schoch committed
586

587
\section{VSEPR/VSEPD}
Alexander Schoch's avatar
Alexander Schoch committed
588
W\"ahrend die Lewis-Struktur aufzeigen kann, welche Atome wie miteinander binden, ist das VSEPR (Valence Shell Electron Pair Repulsion) Modell dazu da, um zu zeigen, wie die Atome r\"aumlich mit einander stehen. VSEPR wird immer nach dem gleichen Schema angewandt.
589

590
591
% TODO: this is a huuuuuuge mess

Alexander Schoch's avatar
Alexander Schoch committed
592
\cmt{
593
594
595
596
\begin{longtable}{p{0.6\linewidth}p{0.24\linewidth}}
    \caption{VSEPR Vorgehensweise} \\
		\toprule
    \textbf{Rezept} & \textbf{Beispiel: \ce{IF4+}}\\ \midrule\endhead
597
    Zentralatom bestimmen & \ce{I} \\
598
    Valenzelektronen des ungeladen Zentralatoms aufschreiben & $\ce{I} = \ce{7e-}$ \\
599
600
    Ladungen dazurechnen,
    bei positiver Ladung subtrahiert man \ce{e-}, 
601
    bei negativer Ladung addiert man \ce{e-}. Falls negative Ladung und Sauerstoff vorhanden: negative Ladung nicht addieren sondern \ce{O-} bilden.&  $\ce{7e-}-\ce{1e-} = \ce{6e-}$ \\
602
603
604
605
     Anzahl Bindungen bestimmen,
    falls H und O vorkommen: OH machen, 
    F = Einfachbindung, 
    OH oder \ce{O-} = Einfachbindung,
606
    O = Doppelbindung &  $4\cdot\ce{F} = 4\cdot\text{EB}$ \\
607
608
    Anzahl Bindungen abziehen,
    Einfachbindung = \ce{1e-},
609
    Doppelbindung = \ce{2e-} & $\ce{6e-} - \ce{4e-}= \ce{2e-}$ \\
610
    \"ubrige \ce{e-} durch 2 teilen.
611
612
613
614
615
    Dies ist die Anzahl Lonepairs, 
    falls X.5 Lonepairs: X Lonepairs + 1 Radikalorbital & $2\ce{e-}/2=1$Lonepair \\ \midrule
     Koordinationszahl und Grundstruktur (Figure: \ref{Fig:VSEPR}) bestimmen: 
    jeder Bindungspartner = 1, 
    jedes Lonepair = 1, 
616
    jedes Radikalorbital = 1 & \includegraphics[width=0.45\linewidth]{Diagrams/IF4_1.pdf}
617
    \\ \midrule
618
    Grosse Dom\"anen in grosse Dom\"anen Spots einzeichnen.
619
620
    Doppelbindungen = gross, 
    Lonepairs = gross & 
621
    \includegraphics[width=0.5\linewidth]{Diagrams/IF4_2.pdf}\\ \midrule
622
    Restliche Dom\"anen einzeichnen und Ladung am Zentralatom einzeichnen & 
623
    
624
    \includegraphics[width=0.5\linewidth]{Diagrams/IF4_3.pdf}\\ \midrule
625
626
    
\end{longtable}{}
Alexander Schoch's avatar
Alexander Schoch committed
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
}

Hier wird dies am Beispiel von \ce{IF4+} gezeigt.

\begin{enumerate}
  \item Zentralatom bestimmen: \textcolor{blue}{\ce{I}}
  \item Valenzelektronen des ungeladen Zentralatoms aufschreiben: \textcolor{blue}{$\ce{I} = \ce{7e-}$}
  \item Ladungen dazurechnen. 
    \begin{enumerate}
      \item Bei positiver Ladung subtrahiert man \ce{e-} 
      \item Bei negativer Ladung addiert man \ce{e-}. 
      \item Falls negative Ladung und Sauerstoff vorhanden: negative Ladung nicht addieren sondern \ce{O-} bilden.  
    \end{enumerate}
    \textcolor{blue}{$\ce{7e-}-\ce{1e-} = \ce{6e-}$}
  \item Anzahl Bindungen bestimmen.
    \begin{enumerate}
      \item Falls H und O vorkommen: OH machen
      \item F = Einfachbindung
      \item OH oder \ce{O-} = Einfachbindung
      \item O = Doppelbindung 
    \end{enumerate}
    \textcolor{blue}{$4\cdot\ce{F} = 4\cdot\text{EB}$}
  \item Anzahl Bindungen abziehen.
    \begin{enumerate}
      \item Einfachbindung = \ce{1e-}
      \item Doppelbindung = \ce{2e-} 
    \end{enumerate}
    \textcolor{blue}{$\ce{6e-} - \ce{4e-}= \ce{2e-}$}
  \item \"Ubrige \ce{e-} durch 2 teilen. Dies ist die Anzahl Lonepairs. 
    \begin{enumerate} 
      \item Falls $X.5$ Lonepairs: $X$ Lonepairs + 1 Radikalorbital 
    \end{enumerate}
    \textcolor{blue}{$\ce{2e-}/2=1$\,Lonepair}
  \item Koordinationszahl und Grundstruktur (Figure: \ref{Fig:VSEPR}) bestimmen: 
    \begin{enumerate}
      \item jeder Bindungspartner = 1
      \item jedes Lonepair = 1
      \item jedes Radikalorbital = 1 
    \end{enumerate}
    \begin{figure}[H]
      \includegraphics[width=0.1\linewidth]{Diagrams/IF4_1.pdf}
    \end{figure}
  \item Grosse Dom\"anen (Doppelbindungen, Lonepairs) in grosse Dom\"anen Spots einzeichnen. 
    \begin{enumerate}
      \item Pentagonal bipyramidal: equatorial ($\alpha_\mathrm{eq} = \SI{120}{\degree} > \alpha_\mathrm{ax} = \SI{90}{\degree}$)
      \item Heptagonal bipyramidal: axial ($\alpha_\mathrm{eq} = \SI{72}{\degree} < \alpha_\mathrm{ax} = \SI{90}{\degree}$)
      \item Mehrere grosse Domänen haben die grösstmögliche Distanz.
    \end{enumerate}
    \begin{figure}[H]
      \includegraphics[width=0.1\linewidth]{Diagrams/IF4_2.pdf}
    \end{figure}
  \item Restliche Dom\"anen einzeichnen und Ladung am Zentralatom einzeichnen.
    \begin{figure}[H]
      \includegraphics[width=0.1\linewidth]{Diagrams/IF4_3.pdf}
    \end{figure}
\end{enumerate}
683

684
Grosse Dom\"anen nehmen mehr Platz ein und dr\"ucken kleinere Dom\"anen n\"aher zusammen. Beispiel: Bindungswinkel im idealen Tetraeder = \SI{109.5}{\degree}. Winkel \ce{H-O-H} ist \SI{104.45}{\degree} 
685
686

\subsection{Aufgaben}
687
Zeichnen Sie die r\"aumliche Struktur der folgenden Molek\"ule:
688
689

\begin{longtable}{rlrl}
690
	\toprule
691
    \textbf{Nr.} & \textbf{Molek\"ul} & \textbf{Nr.} & \textbf{Molek\"ul}\\ \midrule\endhead
692
693
    1 & \ce{SO2} &9 & \ce{ClO2}\\
    2 & \ce{XeF2} &10& \ce{NH3} \\
694
695
    3 & \ce{IF7}& 11&\ce{IF3} \\
    4 & \ce{ClF4+}& 12&\ce{SO3^{2-}} \\
696
697
698
    5 & \ce{H2O}& 13&\ce{BF3} \\
    6 & \ce{SiF4}& 14&\ce{NO3-} \\
    7 & \ce{PH3}& 15&\ce{CO3^{2-}}\\
699
    8 & \ce{SO3}& 16&\ce{PO4^{3-}} \\ \bottomrule
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
\end{longtable}



\begin{figure}[H]
    \centering
    \begin{subfigure}[b]{0.245\linewidth}
        \centering
        \chemfig{X(-[4]L)(-[0]L)}
        \caption{\ce{XL2}}
    \end{subfigure}
    \begin{subfigure}[b]{0.245\linewidth}
        \centering
        \chemfig{X(-[:60]L)(-[4]L)(-[:-60]L)}
        \caption{\ce{XL3}}
    \end{subfigure}
    \begin{subfigure}[b]{0.245\linewidth}
        \centering
        \chemfig{X(-[2]L)(-[:-150]L)(>:[:-15]L)(<[:-65]L)} 
        \caption{\ce{XL4}}
    \end{subfigure}
    
    \begin{subfigure}[b]{0.245\linewidth}
        \centering
        \chemfig{X(-[4]\textcolor{red}{L})(>:[:20]\textcolor{red}{L})(<[:-20]\textcolor{red}{L})(-[2]L)(-[6]L)}
        \caption{\ce{XL5}}
    \end{subfigure}
    \begin{subfigure}[b]{0.245\linewidth}
        \centering
        \chemfig{X(<[:-15]L)(<[:-165]L)(>:[:15]L)(>:[:165]L)(-[2]L)(-[6]L)}
        \caption{\ce{XL6}}
    \end{subfigure}
    \begin{subfigure}[b]{0.245\linewidth}
        \centering
        \chemfig{X(-[4]L)(<[:-135]L)(>:[:35]L)(>:[:135]L)(-[2]\textcolor{red}{L})(-[6]\textcolor{red}{L})(<[:-35]L)}
        \caption{\ce{XL7}}
    \end{subfigure}
Alexander Schoch's avatar
Alexander Schoch committed
737
    \caption{Die verschiedenen Konfigurationen. Rote \textcolor{red}{L} zeigen, wo die grossen Dom\"anen eingef\"uhrt werden. Punktsymmetrische Geometrien (Linear, Trigonal, Tetraedrisch, Oktaedrisch, Quadratisch Planar) besitzen keine Präferenz.}
738
739
740
741
742
743
744
745
746
747
748
    \label{Fig:VSEPR}
\end{figure}



\section{Komplexe}




\subsection{Licht}
749
F\"ur die Beschreibung von elektro-magnetischer Strahlung sind einige Zahlen wichtig:
750
751
752
753
\begin{itemize}
    \item Die Lichtgeschwindigkeit $c=\SI{299792458}{\meter\per\second}$
    \item Die Plank'sche Konstante $h=\SI{6.62607015e-34}{\joule\per\second}$
    \item Die Frequenz $\nu$ [\si{\per\second}] beschreibt, wie oft die Welle sich pro Sekunde wiederholt
754
755
    \item Die Wellenl\"ange $\lambda$ [\si{\meter}] beschreibt, welche Distanz zur\"uckgelegt wird, bis sich die Welle wiederholt
    \item Die Energie $E$ [\si{\joule}] beschreibt die Energie, welche die Welle tr\"agt
756
\end{itemize}
757
Es gibt viele Arten Wellenl\"ange, Frequenz und Energie in Abh\"angigkeit von einander darzustellen. Hier sind einige die M\"oglichkeiten:
758
\begin{equation}
759
    E = h \nu = {h c \over\lambda}
760
761
\end{equation}
\begin{equation}
762
    \nu = {c\over\lambda} = {E \over h}
763
764
\end{equation}
\begin{equation}    
765
    \lambda = {c\over\nu} = {hc\over E}
766
767
\end{equation}

768
769
\subsection{Atome}
Alles kann als Welle dargestellt werden, man verwendet dabei die de-Broglie-Wellenl\"ange:
770
\begin{equation}
771
    \lambda = \frac{h}{mv}
772
773
\end{equation}
wobei $h$ die Plank'sche Konstante ist, $m$ ist die Masse des Objektes in [\si{\kilo\gram}] und $v$ ist die Geschwindigkeit in [\si{\meter\per\second}].
774
775
\\
F\"ur das Wasserstoff Atom gibt es eine klar berechenbare Formel zur Berechnung der spektralen Linien, sprich der Wellenl\"ange, welche man braucht um das Elektron in eine h\"ohere Schale $n$ anzuregen.
776

777
778
779
780
\begin{equation}
\frac{1}{\lambda} = R_h\left(\frac{1}{n_1^2}-\frac{1}{n_2^2}\right)
\end{equation}
Wobei $R_h$ die Rydbergkonstante f\"ur das Wasserstoffatom ist (Zahlenwert m\"usst Ihr nicht kennen) und $n_1 = 1,2,3...$ die tiefere Schale und  $n_2 = 1,2,3...$ die h\"ohere Schale ist.\\
781
\"ahnlich l\"asst sich die Energiedifferenz der Spekralen Linien f\"ur Wasserstoff im Bohren'schen Atomodell berechnen:
782
\begin{equation}
Alexander Schoch's avatar
Alexander Schoch committed
783
\Delta E [\si{\joule}] = \SI{-2.18e-18}{\joule} \cdot  \left(\frac{1}{n_e^2}-\frac{1}{n_a^2}\right)
784
785
786
787
\end{equation}
Wobei $n_e$ die Endschale und $n_a$ die Anfangsschale ist. Merken Sie sich hier das Konzept, dass die Energiedifferenz zwischen hohen Schalen z.B. $n_e = 10$ und $n_a = 11$ deutlich kleiner ist als die von tieferen Schalen $n_e=1$ und $n_a=2$.

\subsection{Komplexe}
788
Bei Komplexen ist die Aufspaltung der Orbitale entscheidend daf\"ur, welche Wellenlängen aufgenommen werden. Die Energie, welche aufgenommen wird entspricht dabei der Aufspaltung. Für grosse Aufspaltungen, wird hoch energetisches Licht bzw. Licht mit kurzer Wellenlänge absorbiert. Für kleine Aufspaltungen wird Licht mit langer Wellenlänge bzw. kleiner Energie aufgenommen.  Wichtig bei Komplexen ist, dass es einen Angeregten Zustand gibt, so sind d$^0$ farblos (z.B. \ce{[Ti(Cl)4]}), da es keine Elektronen gibt, welche angeregt werden können. d$^{10}$ Komplexe (z.B. \ce{[Zn(OH2)6]^{2+}}) sind auch farblos, da es keine Möglichkeit gibt Elektronen in eine höhers nicht vollbesetztes Orbital zu bewegen.
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806


\begin{figure}[H]
	\centering
	\includegraphics[width=0.95\linewidth]{Diagrams/Color_Complex.pdf}
	\caption{Aufnahme von Licht von zwei verschieden stark aufgespaltenen Oktaedrischen Komplexen.}
	\label{fig:Color_Complex}
\end{figure}

Bei Komplexen sieht man die Komplementärfarbe (Figure \ref{fig:komplementär}) von der Farbe des Lichts, welches für die Anregung absorbiert wurde. Man kann daraus ablesen, welche Komplexe eine grosse Aufspaltung und welche eine kleine Aufspaltung haben. So sind zum Beispiel gelbgrüne, gelbe und orange Komplexe stark aufgespalted, da sie vilottes, blaues und grünblaues Licht absorbieren.

\begin{figure}[H]
	\centering
	\includegraphics[width=0.5\linewidth]{Diagrams/Komplementär.png}
	\caption{Das Farbrad\cite{Komplementarfarbe_Wiki} mit einem Beispiel für zwei Komplementärfarben.}
	\label{fig:komplementär}
\end{figure}
%TODO: NEUE Komplementärfarben Graphik finden?
807

808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
\subsection{\"Ubungen}
Berechnen Sie die Wellenlänge und Energie von gelbem Licht (Frequenz = \SI{520e12}{\per\second}).\\

Berechnen Sie die Frequenz und Wellenlänge von Röntgenstrahlung (Energie = \SI{1.99e-15}{\joule})\\

Ein Neutron, ein Elektron, ein Lastwagen und ein Mensch bewegen sich je mit \SI{5}{\meter\per\second}. Welches Objekt hat die kürzeste Wellenlänge nach Broglie? Welches Objekt hat die kleinste Frequenz? \\

Sie rennen um einen Baum mit \SI{5.56}{\meter\per\second}. Was ist Ihre Wellenlänge?\\

Welche Energie ist mindestens nötig um ein Elektron im Wasserstoffatom von n $=1$ zu n$=4$ anzuregen?\\


Zeigen Sie, anhand eines Energiediagrams, graphisch, wieso ein d$^{10}$ Komplex farblos ist. \\

Komplex A ist gelb, Komplex B ist blau. Welcher Komplex hat die höhere Aufspaltung?


Lösungen: Gelbes Licht: $\lambda=\SI{5.77e-7}{\meter}$, $E = \SI{3.45e-19}{\joule}$\\

R\"ontgenstrahlung: $\lambda=\SI{9.98e-11}{\meter}$, $\nu = \SI{3.00e18}{\per\second}$ \\

Wellenlänge: Elektron > Neutron > Mensch > Lastwagen\\
Frequenz: Elektron < Neutron < Mensch < Lastwagen\\

Ich (\SI{72.2}{\kilo\gram}): \SI{1.84e-36}{\meter}\\

\begin{figure}[H]
	\includegraphics[width=0.25\linewidth]{Diagrams/Losung_Farbe.pdf}
\end{figure}

Komplex A hat die grössere Aufspaltung (Komplementärfarbe = blau). (Komplex B hat die Komplementärfarbe gelb)
839
840
841
842
843
844

\newpage

\bibliographystyle{unsrt}
\bibliography{literature}

845
846
847
848
849
850
851
852
853

\newpage
\section{Lösungen}

\begin{figure}[H]
	\centering
	\includegraphics[width=0.95\linewidth]{Diagrams/Losung_VSEPR.pdf}
\end{figure}

854
\end{document}