Commit 0cb254a2 authored by Remy Moll's avatar Remy Moll
Browse files

Last data-point. Sorry for the delay

parent 11f2e86f
*.npy
data/data_converted/
# Byte-compiled / optimized / DLL files
__pycache__/
*.py[cod]
......
This source diff could not be displayed because it is too large. You can view the blob instead.
{
"cells": [
{
"cell_type": "code",
"execution_count": 14,
"metadata": {},
"outputs": [],
"source": [
"# For plotting interactively:\n",
"%matplotlib ipympl\n",
"from ipywidgets import *\n",
"import matplotlib.pyplot as plt\n",
"\n",
"font = {'family' : 'normal',\n",
" 'weight' : 'normal',\n",
" 'size' : 15}\n",
"\n",
"plt.rc('font', **font)\n",
"\n",
"\n",
"import numpy as np\n"
]
},
{
"cell_type": "code",
"execution_count": 15,
"metadata": {},
"outputs": [
{
"name": "stderr",
"output_type": "stream",
"text": [
"findfont: Font family ['normal'] not found. Falling back to DejaVu Sans.\n"
]
},
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "6838ca332d1442fab8a732ec2d165e3c",
"version_major": 2,
"version_minor": 0
},
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='' width=640.0/>\n",
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"voltage_1 = np.array([1900, 1975, 2000, 2010, 2015, 2020, 2030, 2050, 2075, 2100])\n",
"# We define 2020 as end of the plateau\n",
"count_1 = np.array([224, 685, 1200, 1938, 2322, 2388, 4788, 6588, 21124, 51420])\n",
"count_frequency_1 = count_1/120\n",
"\n",
"voltage_2 = np.array([1975, 2015, 2010, 2020, 2030, 2050, 2100])\n",
"count_2 = np.array([866, 1657, 1573, 2330, 3424, 10252, 64206])\n",
"# not actually used\n",
"count_frequency_2 = count_2/120\n",
"\n",
"new_voltage_2 = np.array([2075, 1975, 2015, 2010, 2020, 2030, 2050, 2100, 1900, 2000, 2040])\n",
"new_count_2 = np.array([5769, 866, 1435, 1331, 1583, 1977, 2944, 7691, 286, 1164, 2302])\n",
"new_count_frequency_2 = new_count_2/120\n",
"\n",
"\n",
"array_1 = np.vstack([voltage_1, count_frequency_1])\n",
"array_1.sort(axis=1)\n",
"\n",
"array_2 = np.vstack([voltage_2, count_frequency_2])\n",
"# WHICH ONE DO WE TAKE?\n",
"array_2.sort(axis=1)\n",
"\n",
"plt.figure()\n",
"# plt.scatter(voltage, count_frequency)\n",
"plt.plot(array_1[0], array_1[1], label=\"PMT 1\")\n",
"plt.plot(array_2[0], array_2[1], label=\"PMT 2\")\n",
"# plt.plot(new_voltage_2, new_count_frequency_2, \"+\", label=\"New PMT2\")\n",
"\n",
"plt.xlabel('Voltage [V]')\n",
"plt.ylabel('Counting Frequency [Hz]')\n",
"# plt.title(f'Counting Frequency vs PMT Voltage')\n",
"plt.legend(loc='best')\n",
"plt.show()\n"
]
},
{
"cell_type": "code",
"execution_count": 9,
"metadata": {},
"outputs": [
{
"name": "stdout",
"output_type": "stream",
"text": [
"2000 20.5 $\\pm$ 0.2 & 15.2 $\\pm$ 0.1 & 8.2 $\\pm$ 0.05 & 6.8 $\\pm$ 0.025 & \n",
"2050 33.2 $\\pm$ 0.2 & 24.0 $\\pm$ 0.1 & 11.3 $\\pm$ 0.07 & 8.0 $\\pm$ 0.04 & \n",
"2100 65.0 $\\pm$ 0.6 & 41.0 $\\pm$ 0.5 & 17.0 $\\pm$ 0.2 & 11.7 $\\pm$ 0.1 & \n",
"2150 75.0 $\\pm$ 0.7 & 48.6 $\\pm$ 0.4 & 25.5 $\\pm$ 0.5 & 16.8 $\\pm$ 0.2 & \n",
"2200 144.0 $\\pm$ 1.0 & 93.5 $\\pm$ 0.5 & 49.3 $\\pm$ 0.3 & 31.6 $\\pm$ 0.2 & \n",
"2250 200.0 $\\pm$ 1.5 & 163.2 $\\pm$ 0.3 & 81.0 $\\pm$ 0.5 & 55.0 $\\pm$ 1.0 & \n",
"2300 357.0 $\\pm$ 1.5 & 269.0 $\\pm$ 2.5 & 167.0 $\\pm$ 1.5 & 117.5 $\\pm$ 1.5 & \n",
"2350 401.0 $\\pm$ 2.0 & 325.0 $\\pm$ 1.5 & 253.0 $\\pm$ 1.0 & 200.0 $\\pm$ 1.5 & \n",
"2400 544.0 $\\pm$ 3.0 & 450.0 $\\pm$ 10.0 & 350.0 $\\pm$ 10.0 & 280.0 $\\pm$ 20.0 & \n",
"2450 502.0 $\\pm$ 5.0 & 409.0 $\\pm$ 5.0 & 320.0 $\\pm$ 15.0 & 260.0 $\\pm$ 8.0 & \n",
"2500 545.0 $\\pm$ 5.0 & 480.0 $\\pm$ 5.0 & 385.0 $\\pm$ 8.0 & 304.0 $\\pm$ 10.0 & \n"
]
}
],
"source": [
"anode_voltage = np.array([2000, 2050, 2100, 2150, 2200, 2250, 2300, 2350, 2400, 2450, 2500])\n",
"\n",
"mean_peak_1 = np.array([20.5, 33.2, 65.0, 75.0, 144, 200, 357, 401, 544, 502, 545])\n",
"uncertainty_1 = np.array([0.2, 0.2, 0.6, 0.7, 1.0, 1.5, 1.5, 2, 3, 5, 5])\n",
"\n",
"mean_peak_2 = np.array([15.2, 24.0, 41.0, 48.6, 93.5, 163.2, 269, 325, 450, 409, 480])\n",
"uncertainty_2 = np.array([0.1, 0.1, 0.5, 0.4, 0.5, 0.3, 2.5, 1.5, 10, 5, 5])\n",
"\n",
"mean_peak_3 = np.array([8.2, 11.3, 17.0, 25.5, 49.3, 81.0, 167, 253, 350, 320, 385])\n",
"uncertainty_3 = np.array([0.05, 0.07, 0.2, 0.5, 0.3, 0.5, 1.5, 1, 10, 15, 8])\n",
"\n",
"mean_peak_4 = np.array([6.8, 8.0, 11.7, 16.8, 31.6, 55.0, 117.5, 200, 280, 260, 304])\n",
"uncertainty_4 = np.array([0.025, 0.04, 0.1, 0.2, 0.2, 1, 1.5, 1.5, 20, 8, 10])\n",
"\n",
"arrs = [mean_peak_1,mean_peak_2,mean_peak_3,mean_peak_4]\n",
"errs = [uncertainty_1, uncertainty_2, uncertainty_3, uncertainty_4]\n",
"for k in range(arrs[0].size):\n",
" print(anode_voltage[k], end=\" \")\n",
" for i in range(4):\n",
" print(\"{} $\\pm$ {} & \".format(arrs[i][k], errs[i][k]), end=\"\")\n",
" print(\"\")\n",
" \n",
"\n",
"# 578, 0.8; 523, 1; 423, 1.5;360, 0.8\n"
]
},
{
"cell_type": "code",
"execution_count": 17,
"metadata": {},
"outputs": [
{
"data": {
"application/vnd.jupyter.widget-view+json": {
"model_id": "153ce8f17e0e4530a7363791b025d6e4",
"version_major": 2,
"version_minor": 0
},
"text/html": [
"\n",
" <div style=\"display: inline-block;\">\n",
" <div class=\"jupyter-widgets widget-label\" style=\"text-align: center;\">\n",
" Figure\n",
" </div>\n",
" <img src='' width=640.0/>\n",
" </div>\n",
" "
],
"text/plain": [
"Canvas(toolbar=Toolbar(toolitems=[('Home', 'Reset original view', 'home', 'home'), ('Back', 'Back to previous …"
]
},
"metadata": {},
"output_type": "display_data"
}
],
"source": [
"plt.figure()\n",
"plt.errorbar(anode_voltage, mean_peak_1, yerr=uncertainty_1, label=\"Channel 1\")\n",
"plt.errorbar(anode_voltage, mean_peak_2, yerr=uncertainty_2, label=\"Channel 2\")\n",
"plt.errorbar(anode_voltage, mean_peak_3, yerr=uncertainty_3, label=\"Channel 3\")\n",
"plt.errorbar(anode_voltage, mean_peak_4, yerr=uncertainty_4, label=\"Channel 4\")\n",
"\n",
"plt.xlabel('Anode Voltage [V]')\n",
"plt.ylabel('Mean Peak Voltage [mV]')\n",
"# plt.title('Mean Peak Voltage per channel vs Anode Voltage')\n",
"plt.legend(loc='best')\n",
"plt.show()\n",
"\n",
" # mean_peak_average = np.zeros_like(mean_peak[0])\n",
" # for mean_peak in mean_peak_list:\n",
" # return\n",
" \n",
" \n",
" \n",
" # #plt.figure(figsize=(12,8))\n",
" # plt.errorbar(voltage, mean_peak, yerr=uncertainty)\n",
" # #plt. # plt.legend(loc='best')\n",
" # plot(voltage,count)\n",
" # plt.xlabel('Anode Voltage [V]')\n",
" # plt.ylabel('Mean Peak Voltage [mV]')\n",
" # plt.title(f'Mean Peak Voltage Channel {number} vs Anode Voltage')\n",
" # plt.savefig(f\"Mean Peak Voltage Channel {number} vs Anode Voltage.pdf\", dpi=dpi_set)\n",
" # plt.show()"
]
},
{
"cell_type": "code",
"execution_count": 11,
"metadata": {},
"outputs": [],
"source": [
"# plot_anode(anode_voltage, mean_peak_1, uncertainty_1, 1)\n",
"# plot_anode(anode_voltage, mean_peak_2, uncertainty_2, 2)\n",
"# plot_anode(anode_voltage, mean_peak_3, uncertainty_3, 3)\n",
"# plot_anode(anode_voltage, mean_peak_4, uncertainty_4, 4)\n"
]
}
],
"metadata": {
"interpreter": {
"hash": "69414746224b7fd1cf715ab6582df012d701881e796edf01afa66d1cf26450ce"
},
"kernelspec": {
"display_name": "Python 3.9.7 64-bit ('VEL': venv)",
"language": "python",
"name": "python3"
},
"language_info": {
"codemirror_mode": {
"name": "ipython",
"version": 3
},
"file_extension": ".py",
"mimetype": "text/x-python",
"name": "python",
"nbconvert_exporter": "python",
"pygments_lexer": "ipython3",
"version": "3.9.7"
},
"orig_nbformat": 4
},
"nbformat": 4,
"nbformat_minor": 2
}
%% Cell type:code id: tags:
``` python
# For plotting interactively:
%matplotlib ipympl
from ipywidgets import *
import matplotlib.pyplot as plt
font = {'family' : 'normal',
'weight' : 'normal',
'size' : 15}
plt.rc('font', **font)
import numpy as np
```
%% Cell type:code id: tags:
``` python
voltage_1 = np.array([1900, 1975, 2000, 2010, 2015, 2020, 2030, 2050, 2075, 2100])
# We define 2020 as end of the plateau
count_1 = np.array([224, 685, 1200, 1938, 2322, 2388, 4788, 6588, 21124, 51420])
count_frequency_1 = count_1/120
voltage_2 = np.array([1975, 2015, 2010, 2020, 2030, 2050, 2100])
count_2 = np.array([866, 1657, 1573, 2330, 3424, 10252, 64206])
# not actually used
count_frequency_2 = count_2/120
new_voltage_2 = np.array([2075, 1975, 2015, 2010, 2020, 2030, 2050, 2100, 1900, 2000, 2040])
new_count_2 = np.array([5769, 866, 1435, 1331, 1583, 1977, 2944, 7691, 286, 1164, 2302])
new_count_frequency_2 = new_count_2/120
array_1 = np.vstack([voltage_1, count_frequency_1])
array_1.sort(axis=1)
array_2 = np.vstack([voltage_2, count_frequency_2])
# WHICH ONE DO WE TAKE?
array_2.sort(axis=1)
plt.figure()
# plt.scatter(voltage, count_frequency)
plt.plot(array_1[0], array_1[1], label="PMT 1")
plt.plot(array_2[0], array_2[1], label="PMT 2")
# plt.plot(new_voltage_2, new_count_frequency_2, "+", label="New PMT2")
plt.xlabel('Voltage [V]')
plt.ylabel('Counting Frequency [Hz]')
# plt.title(f'Counting Frequency vs PMT Voltage')
plt.legend(loc='best')
plt.show()
```
%%%% Output: stream
findfont: Font family ['normal'] not found. Falling back to DejaVu Sans.
%%%% Output: display_data
%% Cell type:code id: tags:
``` python
anode_voltage = np.array([2000, 2050, 2100, 2150, 2200, 2250, 2300, 2350, 2400, 2450, 2500])
mean_peak_1 = np.array([20.5, 33.2, 65.0, 75.0, 144, 200, 357, 401, 544, 502, 545])
uncertainty_1 = np.array([0.2, 0.2, 0.6, 0.7, 1.0, 1.5, 1.5, 2, 3, 5, 5])
mean_peak_2 = np.array([15.2, 24.0, 41.0, 48.6, 93.5, 163.2, 269, 325, 450, 409, 480])
uncertainty_2 = np.array([0.1, 0.1, 0.5, 0.4, 0.5, 0.3, 2.5, 1.5, 10, 5, 5])
mean_peak_3 = np.array([8.2, 11.3, 17.0, 25.5, 49.3, 81.0, 167, 253, 350, 320, 385])
uncertainty_3 = np.array([0.05, 0.07, 0.2, 0.5, 0.3, 0.5, 1.5, 1, 10, 15, 8])
mean_peak_4 = np.array([6.8, 8.0, 11.7, 16.8, 31.6, 55.0, 117.5, 200, 280, 260, 304])
uncertainty_4 = np.array([0.025, 0.04, 0.1, 0.2, 0.2, 1, 1.5, 1.5, 20, 8, 10])
arrs = [mean_peak_1,mean_peak_2,mean_peak_3,mean_peak_4]
errs = [uncertainty_1, uncertainty_2, uncertainty_3, uncertainty_4]
for k in range(arrs[0].size):
print(anode_voltage[k], end=" ")
for i in range(4):
print("{} $\pm$ {} & ".format(arrs[i][k], errs[i][k]), end="")
print("")
# 578, 0.8; 523, 1; 423, 1.5;360, 0.8
```
%%%% Output: stream
2000 20.5 $\pm$ 0.2 & 15.2 $\pm$ 0.1 & 8.2 $\pm$ 0.05 & 6.8 $\pm$ 0.025 &
2050 33.2 $\pm$ 0.2 & 24.0 $\pm$ 0.1 & 11.3 $\pm$ 0.07 & 8.0 $\pm$ 0.04 &
2100 65.0 $\pm$ 0.6 & 41.0 $\pm$ 0.5 & 17.0 $\pm$ 0.2 & 11.7 $\pm$ 0.1 &
2150 75.0 $\pm$ 0.7 & 48.6 $\pm$ 0.4 & 25.5 $\pm$ 0.5 & 16.8 $\pm$ 0.2 &
2200 144.0 $\pm$ 1.0 & 93.5 $\pm$ 0.5 & 49.3 $\pm$ 0.3 & 31.6 $\pm$ 0.2 &
2250 200.0 $\pm$ 1.5 & 163.2 $\pm$ 0.3 & 81.0 $\pm$ 0.5 & 55.0 $\pm$ 1.0 &
2300 357.0 $\pm$ 1.5 & 269.0 $\pm$ 2.5 & 167.0 $\pm$ 1.5 & 117.5 $\pm$ 1.5 &
2350 401.0 $\pm$ 2.0 & 325.0 $\pm$ 1.5 & 253.0 $\pm$ 1.0 & 200.0 $\pm$ 1.5 &
2400 544.0 $\pm$ 3.0 & 450.0 $\pm$ 10.0 & 350.0 $\pm$ 10.0 & 280.0 $\pm$ 20.0 &
2450 502.0 $\pm$ 5.0 & 409.0 $\pm$ 5.0 & 320.0 $\pm$ 15.0 & 260.0 $\pm$ 8.0 &
2500 545.0 $\pm$ 5.0 & 480.0 $\pm$ 5.0 & 385.0 $\pm$ 8.0 & 304.0 $\pm$ 10.0 &
%% Cell type:code id: tags:
``` python
plt.figure()
plt.errorbar(anode_voltage, mean_peak_1, yerr=uncertainty_1, label="Channel 1")
plt.errorbar(anode_voltage, mean_peak_2, yerr=uncertainty_2, label="Channel 2")
plt.errorbar(anode_voltage, mean_peak_3, yerr=uncertainty_3, label="Channel 3")
plt.errorbar(anode_voltage, mean_peak_4, yerr=uncertainty_4, label="Channel 4")
plt.xlabel('Anode Voltage [V]')
plt.ylabel('Mean Peak Voltage [mV]')
# plt.title('Mean Peak Voltage per channel vs Anode Voltage')
plt.legend(loc='best')
plt.show()
# mean_peak_average = np.zeros_like(mean_peak[0])
# for mean_peak in mean_peak_list:
# return
# #plt.figure(figsize=(12,8))
# plt.errorbar(voltage, mean_peak, yerr=uncertainty)
# #plt. # plt.legend(loc='best')
# plot(voltage,count)
# plt.xlabel('Anode Voltage [V]')
# plt.ylabel('Mean Peak Voltage [mV]')
# plt.title(f'Mean Peak Voltage Channel {number} vs Anode Voltage')
# plt.savefig(f"Mean Peak Voltage Channel {number} vs Anode Voltage.pdf", dpi=dpi_set)
# plt.show()
```
%%%% Output: display_data
%% Cell type:code id: tags:
``` python
# plot_anode(anode_voltage, mean_peak_1, uncertainty_1, 1)
# plot_anode(anode_voltage, mean_peak_2, uncertainty_2, 2)
# plot_anode(anode_voltage, mean_peak_3, uncertainty_3, 3)
# plot_anode(anode_voltage, mean_peak_4, uncertainty_4, 4)
```
......@@ -3,7 +3,7 @@ import matplotlib.pyplot as plt
#%% Measurements
voltage_1 = np.array([1900, 1975, 2000, 2010, 2015, 2020, 2030, 2050, 2075, 2100]) # We define 2020 as end of the plateau
count_1 = np.array([ 224, 685, 1200, 1938, 2322, 2388, 4788, 6588, 21124, 51420])
count_1 = np.array([224, 685, 1200, 1938, 2322, 2388, 4788, 6588, 21124, 51420])
count_frequency_1 = count_1/120
voltage_2 = np.array([1975, 2015, 2010, 2020, 2030, 2050, 2100])
......
This source diff could not be displayed because it is stored in LFS. You can view the blob instead.
......@@ -207,6 +207,7 @@ class ArrayLoader:
for f in files:
if fname_fuzzy in f:
matches.append(f)
if len(matches) > 1:
print("Warning: The measurement file was not unambiguous. Please specify more arguments")
return
......@@ -214,7 +215,10 @@ class ArrayLoader:
print("Warning: No data found.")
return
else:
fname = self.base_path + matches[0]
f = matches[0]
delay = int(f[f.find("_d") + 2 : f.find(".dat")])
fname = self.base_path + f
fname_converted = fname.replace(self.base_path, self.base_path + "data_converted/").replace(".dat", ".npy")
# change /data/... to /data/data_converted and change .dat to .npy
......
from os import device_encoding
import numpy as np
from scipy import signal
import decode
DECODER = decode.ArrayLoader("data/")
from . import decode
DECODER = decode.ArrayLoader("driftchamber_computations/data/")
......@@ -96,9 +95,18 @@ class Event:
return (good >= self.min_good_channels)# and ends_good
def recreate_muon_path(self, drift_velocity):
pass
def recreate_muon_path(self, drift_velocity, delta_v, minimum_times):
x_pos = []
x_err = []
for i,ch in enumerate(self.channels):
delta_t = ch.peak_time - minimum_times[i] # each channel has a different minimum time
x_pos.append(drift_velocity * delta_t)
if not ch.is_usable:
x_err.append(0.3)
else:
x_err.append(delta_v * delta_t)
return np.array(x_pos), np.array(x_err)
class Measurement:
......@@ -114,6 +122,7 @@ class Measurement:
self.events.append(Event(loaded[i,...], nbins, min_good_channels))
del loaded
self.n_events = len(self.events)
self.n_channels = self.events[0].n_channels
def filter_events(self):
......@@ -134,4 +143,37 @@ class Measurement:
else:
timings[j,i] = -1
return timings
\ No newline at end of file
return timings
def get_per_channel_histogram(self, nbins):
"""Returns the binned histograms as well as their bin-centers"""
timings = self.get_peak_timings()
hists = []
bin_centers = []
raw_datas = []
self._min_times = []
for i in range(timings.shape[0]): # usually 8
hist, bin_edges = np.histogram(timings[i,...], bins=nbins, density=True)#, stacked=True)
bin_center = (bin_edges[:-1] + bin_edges[1:]) / 2
self._min_times.append(bin_center[1]) # 0th element is 0
hists.append(hist)
bin_centers.append(bin_center)
raw_datas.append(timings[i,...])
return raw_datas, hists, bin_centers
@property
def per_channel_min_times(self):
try:
return self._min_times
except:
raise Exception("Please call get_per_channel_histogram first.")
def get_total_histogram(self, nbins):
hists, bin_centers = self.get_per_channel_histogram(nbins)
avg_hist = np.mean(hists, axis=0)
avg_bin_centers = np.mean(bin_centers, axis=0)
return avg_hist, avg_bin_centers
\ No newline at end of file
Supports Markdown
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment