mutual_information.py 6.77 KB
Newer Older
mgassner's avatar
mgassner committed
1
from ast import parse
mgassner's avatar
mgassner committed
2
3
4
5
6
7
8
9
import numpy as np
import yaml
import time
import matplotlib.pyplot as plt

from create_model import spin_model
from entropy_new import compute_MI, compute_entropy, reduced_dm

mgassner's avatar
mgassner committed
10
11
import argparse
parser = argparse.ArgumentParser()
mgassner's avatar
mgassner committed
12
13
parser.add_argument("--set_number_spins", "-d", dest='number_spins',type=int, required=False)
parser.add_argument("--set_param_range_and_steps", '-pr', dest='param_range', nargs='+', type=float)
mgassner's avatar
mgassner committed
14
parser.add_argument("--model_name", "-m", dest='model_name' ,type=str, required=True)
mgassner's avatar
mgassner committed
15
16
parser.add_argument("--set_spin_range", "-sr", dest='spin_range', nargs='+', type=int)
parser.add_argument("--set_param", "-p", dest='param',type=float, required=False)
mgassner's avatar
mgassner committed
17
18
args = parser.parse_args()

mgassner's avatar
mgassner committed
19
def test_mutual_information():
mgassner's avatar
mgassner committed
20
    # change return in compute_MI to run this function [S_A, S_B, S_AB] instead of S_A + S_B - S_AB
mgassner's avatar
mgassner committed
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
    model_name = 'xxz'
    number_spins = 10
    periodic = False
    spin_inversion = None
    param = 1.0
    if param < -1.0:
        hamming_weight = None
    else: 
        hamming_weight = number_spins // 2
    model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
                            param=param, hamming_weight=hamming_weight ,spin_inversion=spin_inversion)
    model.compute_ew_and_ev()
    print('EIGENSTATE at h/J = ', param, 'is: ', model.eigenstates[:,0])
    sub_dim = 4
    first_trace_spin = 4
    basis_states = model.basis.states
    gs = model.eigenstates[:,0]
    print('Number Spins: ', model.basis.number_spins)
    print('States', model.basis.states)
    print('Sub Dimension is ', sub_dim)
    entropies = compute_MI(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion=None, first_trace_spin=first_trace_spin)
    MI = entropies[0] + entropies[1] - entropies[2]
    print(MI)
    print(entropies)
    print('--------------------Test-----------------------')
    rhos4 = reduced_dm(4, number_spins, hamming_weight, gs, basis_states)
mgassner's avatar
mgassner committed
47
48
49
    rhos6 = reduced_dm(6, number_spins, hamming_weight, gs, basis_states)
    print(compute_entropy(rhos4), compute_entropy(rhos6))

mgassner's avatar
mgassner committed
50
def MI_vs_Entropy(model_name, number_spins, param_range):
mgassner's avatar
mgassner committed
51

mgassner's avatar
mgassner committed
52
    model_name = model_name
mgassner's avatar
mgassner committed
53
    number_spins = number_spins
mgassner's avatar
mgassner committed
54
55
    periodic = False
    spin_inversion = None
mgassner's avatar
mgassner committed
56
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
mgassner's avatar
mgassner committed
57

mgassner's avatar
mgassner committed
58
59
    sub_dim = 4
    first_trace_spin = 4
mgassner's avatar
mgassner committed
60
61
    MIs = []
    Entropies = []
mgassner's avatar
mgassner committed
62
    Entropies4 = []
mgassner's avatar
mgassner committed
63

mgassner's avatar
mgassner committed
64
    print('Number Spins: ', number_spins)
mgassner's avatar
mgassner committed
65
66
    print('Sub Dimension is ', sub_dim)
    for param in params:
mgassner's avatar
mgassner committed
67
        if param < -1.0 or model_name == 'tfim':
mgassner's avatar
mgassner committed
68
            hamming_weight = None
mgassner's avatar
mgassner committed
69
70
71
        else:
            hamming_weight = number_spins // 2
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
mgassner committed
72
73
74
75
                            param=param, hamming_weight=hamming_weight ,spin_inversion=spin_inversion)
        model.compute_ew_and_ev()
        basis_states = model.basis.states
        gs = model.eigenstates[:,0]
mgassner's avatar
mgassner committed
76
        MI = compute_MI(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion=None, first_trace_spin=first_trace_spin)
mgassner's avatar
mgassner committed
77
        MIs.append(MI)
mgassner's avatar
mgassner committed
78
        rho_half = reduced_dm(number_spins // 2, number_spins, hamming_weight, gs, basis_states)
mgassner's avatar
mgassner committed
79
        Entropies.append(compute_entropy(rho_half))
mgassner's avatar
mgassner committed
80
81
        rho_4spin = reduced_dm(4, number_spins, hamming_weight, gs, basis_states)
        Entropies4.append(compute_entropy(rho_4spin))
mgassner's avatar
mgassner committed
82
        del model
mgassner's avatar
mgassner committed
83
84
85
86
87
88
89
90

    data = {
        'Model': model_name,
        'Number_spins': number_spins,
        'Periodic': periodic,
        'Hamming_weight': hamming_weight,
        'Sub_dim': sub_dim,
        'Delta or h over J': params,
mgassner's avatar
mgassner committed
91
92
        'Entropies half chain': Entropies,
        'Entropies 4 spin': Entropies4,
mgassner's avatar
mgassner committed
93
94
95
96
97
98
99
100
101
102
        'Mutual Informations': MIs
    }

    timestr = time.strftime("%Y%m%d-%H%M%S")
    filename = 'MI_fixed_dim' + timestr
    with open('output/' + filename + '.yaml', 'w') as outfile:
        yaml.dump(data, outfile, default_flow_style=False)
    print(filename)

    plt.figure(figsize=(12,12))
mgassner's avatar
mgassner committed
103
    plt.title('MI: ' + model_name + ' ' + str(number_spins) + ' ' + str(periodic))
mgassner's avatar
mgassner committed
104
    plt.plot(params, Entropies, label='Half-chain Entropy')
mgassner's avatar
mgassner committed
105
    plt.plot(params, Entropies4, label='4 spin entropy')
mgassner's avatar
mgassner committed
106
107
108
    plt.plot(params, MIs, label='Mutual Information')
    plt.grid(True)
    plt.legend()
mgassner's avatar
mgassner committed
109
110
    plt.savefig('output/' + filename + '.png')

mgassner's avatar
mgassner committed
111
112
113
114
115
116
117
118
119
120
121
122
123
124
def MutInf(model_name, param, spin_range):

    model_name = model_name
    periodic = False
    spin_inversion = None
    sub_dim = 4
    first_trace_spin = 4
    MIs = []
    Entropies = []
    Entropies_div_ns = []
    number_spins_range = [2*i for i in range(spin_range[0]//2, spin_range[1]//2 + 1)]
    for number_spins in number_spins_range:
        print('Number Spins: ', number_spins)
        print('Sub Dimension is ', sub_dim)
mgassner's avatar
mgassner committed
125
126
        if param < -1.0 or model_name == 'tfim': 
            hamming_weight = None 
mgassner's avatar
mgassner committed
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
        else: 
            hamming_weight = number_spins //2

        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
                            param=param, hamming_weight=hamming_weight ,spin_inversion=spin_inversion)
        model.compute_ew_and_ev()
        basis_states = model.basis.states
        gs = model.eigenstates[:,0]
        MI = compute_MI(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion=None, first_trace_spin=first_trace_spin)
        MIs.append(MI/sub_dim)
        rho_half = reduced_dm(number_spins // 2, number_spins, hamming_weight, gs, basis_states)
        Entropies.append(compute_entropy(rho_half))
        Entropies_div_ns.append(Entropies[-1]/number_spins)
        del model

    data = {
        'Model': model_name,
        'Number_spins': number_spins_range,
        'Periodic': periodic,
        'Hamming_weight': hamming_weight,
        'Sub_dim': sub_dim,
        'Delta or h over J': param,
        'Entropies': Entropies,
        'Mutual Informations': MIs
    }

    timestr = time.strftime("%Y%m%d-%H%M%S")
    filename = 'MI_fixed_param' + timestr
    with open('output/' + filename + '.yaml', 'w') as outfile:
        yaml.dump(data, outfile, default_flow_style=False)
    print(filename)

    plt.figure(figsize=(12,12))
    plt.title('MI: ' + model_name + ' ' + str(param) + ' ' + str(periodic))
    plt.plot(number_spins_range, Entropies_div_ns, label='Half-chain Entropy / Spin-Chain-Length')
    plt.plot(number_spins_range, MIs, label='Mutual Information / SubDim--Length')
    plt.grid(True)
    plt.xlabel("Number Spins")
    plt.legend()
    plt.savefig('output/' + filename + '.png')


mgassner's avatar
mgassner committed
169
170
171
172
if __name__ == "__main__":
    model_name = args.model_name
    param_range = args.param_range
    number_spins = args.number_spins
mgassner's avatar
mgassner committed
173
174
    spin_range = args.spin_range
    param = args.param
mgassner's avatar
mgassner committed
175
176
    MI_vs_Entropy(model_name, number_spins, param_range)
    #MutInf(model_name, param, spin_range)