xxz.py 4.37 KB
Newer Older
mgassner's avatar
mgassner committed
1
from create_model import generate_symmetries
mgassner's avatar
mgassner committed
2
3
4
5
6
7
8
9
import numpy as np
import yaml
import time
import matplotlib.pyplot as plt

from create_model import spin_model
from entropy_new import reduced_dm, compute_entropy

mgassner's avatar
mgassner committed
10
11
12
13
14
15
16
17
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--set_number_spins", "-d", dest='number_spins',type=int, required=False)
parser.add_argument("--set_param_range_and_steps", '-pr', dest='param_range', nargs='+', type=float, required=False)
parser.add_argument("--boundary_condition", "-b", dest='periodic' ,type=bool, required=False)
args = parser.parse_args()


mgassner's avatar
mgassner committed
18
def test_xxz():
mgassner's avatar
mgassner committed
19
    model_name = 'xxz'
mgassner's avatar
mgassner committed
20
21
22
23
    number_spins = 6
    periodic = False
    spin_inversion = None
    param = -2.0
mgassner's avatar
mgassner committed
24
    if param < -1.0:
mgassner's avatar
mgassner committed
25
        hamming_weight = 0
mgassner's avatar
mgassner committed
26
    else: 
mgassner's avatar
mgassner committed
27
        hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
28
    model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
mgassner committed
29
                            param=param, hamming_weight=hamming_weight,  use_symmetries=False ,spin_inversion=spin_inversion)
mgassner's avatar
mgassner committed
30
31
    model.compute_ew_and_ev()
    print('EIGENSTATE at h/J = ', param, 'is: ', model.eigenstates[:,0])
mgassner's avatar
mgassner committed
32
    sub_dims = np.arange(1, number_spins)
mgassner's avatar
mgassner committed
33
34
35
36
37
    number_spins = model.number_spins()
    basis_states = model.basis.states
    gs = model.eigenstates[:,0]
    print('Number Spins: ', model.basis.number_spins)
    print('States', model.basis.states)
mgassner's avatar
mgassner committed
38
    for sub_dim in sub_dims:
mgassner's avatar
mgassner committed
39
40
        print('Sub Dimension is ', sub_dim)
        rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion)
mgassner's avatar
mgassner committed
41
        print(rhos)
mgassner's avatar
mgassner committed
42
43
44
        entropy = compute_entropy(rhos)
        print(entropy)
        print('-------------------------------------------')
mgassner's avatar
mgassner committed
45
    
mgassner's avatar
mgassner committed
46
def test_area_law(number_spins, periodic, param_range):
mgassner's avatar
mgassner committed
47
48
    model_name = 'xxz'
    hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
49
50
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
    spin_inversion = None
mgassner's avatar
mgassner committed
51
    entropies = {}
mgassner's avatar
mgassner committed
52
    sub_dims = [i for i in range(1,number_spins)]
mgassner's avatar
mgassner committed
53
    for param in params:
mgassner's avatar
mgassner committed
54
55
56
57
        if param < -1.0:
            hamming = None
        else: 
            hamming = hamming_weight
mgassner's avatar
mgassner committed
58
59
        bipartite_entropies = []
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
mgassner committed
60
                                param=param, hamming_weight=hamming, spin_inversion=spin_inversion)
mgassner's avatar
mgassner committed
61
62
63
64
65
66
        model.compute_ew_and_ev()
        gs = model.eigenstates[:,0]
        basis_states = model.basis.states
        for sub_dim in sub_dims:
            print('----------------------------------')
            print('Sub Dimension is ', sub_dim)
mgassner's avatar
mgassner committed
67
            rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion)
mgassner's avatar
mgassner committed
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
            bipartite_entropies.append(compute_entropy(rhos))
        entropies[str(param)] = bipartite_entropies
        del model
    
    data = {
        'Model': model_name,
        'Number_spins': number_spins,
        'Periodic': periodic,
        'Hamming_weight': hamming_weight,
        'Sub_dims': sub_dims,
        'Delta_over_J': params,
        'Entropies': entropies
    }

    timestr = time.strftime("%Y%m%d-%H%M%S")
    filename = 'test_area_law_' + timestr
    with open('output/' + filename + '.yaml', 'w') as outfile:
        yaml.dump(data, outfile, default_flow_style=False)
    print(filename)
    plt.figure(figsize=(12,12))
    i = 0
    for key in entropies:
        if i % 5 == 0:
            plt.plot(np.array(sub_dims)/number_spins, entropies[key], label='Delta_over_J:' + key)
        i += 1
    plt.legend()
    plt.xlabel('x/L')
    plt.ylabel('Bipartite Entanglement Entropy')
mgassner's avatar
mgassner committed
96
    plt.title('Model:' + model_name + ' Number spins:' + str(number_spins))#, ' Periodic:' + str(periodic))
mgassner's avatar
mgassner committed
97
98
99
100
101
    plt.grid(True)

    plt.savefig('output/' + filename + '.jpg')


mgassner's avatar
mgassner committed
102
    plt.figure(figsize=(12, 12))
mgassner's avatar
mgassner committed
103
104
    half_chain_ee = []
    for key in entropies:
mgassner's avatar
mgassner committed
105
        half_chain_ee.append(entropies[key][number_spins // 2 - 1])
mgassner's avatar
mgassner committed
106
107
108
109
110
111
112
113
    plt.plot(params, half_chain_ee, label='Delta_over_J:' + key)
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
    plt.title('Model:' + model_name + ' Number spins:' + str(number_spins))#, ' Periodic:' + str(periodic))
    plt.grid(True)

    plt.savefig('output/' + 'entropy' + timestr + '.jpg')
mgassner's avatar
mgassner committed
114
115
116
117
118
119

if __name__ == "__main__":
    param_range = args.param_range
    number_spins = args.number_spins
    periodic = args.periodic
    test_area_law(number_spins, periodic, param_range)