mutual_information.py 6.59 KB
Newer Older
mgassner's avatar
mgassner committed
1
from ast import parse
mgassner's avatar
mgassner committed
2
3
4
5
6
7
8
9
import numpy as np
import yaml
import time
import matplotlib.pyplot as plt

from create_model import spin_model
from entropy_new import compute_MI, compute_entropy, reduced_dm

mgassner's avatar
mgassner committed
10
11
import argparse
parser = argparse.ArgumentParser()
mgassner's avatar
mgassner committed
12
13
parser.add_argument("--set_number_spins", "-d", dest='number_spins',type=int, required=False)
parser.add_argument("--set_param_range_and_steps", '-pr', dest='param_range', nargs='+', type=float)
mgassner's avatar
mgassner committed
14
parser.add_argument("--model_name", "-m", dest='model_name' ,type=str, required=True)
mgassner's avatar
mgassner committed
15
16
parser.add_argument("--set_spin_range", "-sr", dest='spin_range', nargs='+', type=int)
parser.add_argument("--set_param", "-p", dest='param',type=float, required=False)
mgassner's avatar
mgassner committed
17
18
args = parser.parse_args()

mgassner's avatar
mgassner committed
19
def test_mutual_information():
mgassner's avatar
mgassner committed
20
    # change return in compute_MI to run this function [S_A, S_B, S_AB] instead of S_A + S_B - S_AB
mgassner's avatar
mgassner committed
21
22
23
24
25
    model_name = 'xxz'
    number_spins = 10
    periodic = False
    spin_inversion = None
    param = 1.0
mgassner's avatar
mgassner committed
26
    hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
    model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
                            param=param, hamming_weight=hamming_weight ,spin_inversion=spin_inversion)
    model.compute_ew_and_ev()
    print('EIGENSTATE at h/J = ', param, 'is: ', model.eigenstates[:,0])
    sub_dim = 4
    first_trace_spin = 4
    basis_states = model.basis.states
    gs = model.eigenstates[:,0]
    print('Number Spins: ', model.basis.number_spins)
    print('States', model.basis.states)
    print('Sub Dimension is ', sub_dim)
    entropies = compute_MI(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion=None, first_trace_spin=first_trace_spin)
    MI = entropies[0] + entropies[1] - entropies[2]
    print(MI)
    print(entropies)
    print('--------------------Test-----------------------')
    rhos4 = reduced_dm(4, number_spins, hamming_weight, gs, basis_states)
mgassner's avatar
mgassner committed
44
45
46
    rhos6 = reduced_dm(6, number_spins, hamming_weight, gs, basis_states)
    print(compute_entropy(rhos4), compute_entropy(rhos6))

mgassner's avatar
mgassner committed
47
def MI_vs_Entropy(model_name, number_spins, param_range):
mgassner's avatar
mgassner committed
48

mgassner's avatar
mgassner committed
49
    model_name = model_name
mgassner's avatar
mgassner committed
50
    number_spins = number_spins
mgassner's avatar
mgassner committed
51
    periodic = False
mgassner's avatar
mgassner committed
52
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
mgassner's avatar
mgassner committed
53

mgassner's avatar
mgassner committed
54
55
    sub_dim = 4
    first_trace_spin = 4
mgassner's avatar
mgassner committed
56
57
    MIs = []
    Entropies = []
mgassner's avatar
mgassner committed
58
    Entropies4 = []
mgassner's avatar
mgassner committed
59
    hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
60
    print('Number Spins: ', number_spins)
mgassner's avatar
mgassner committed
61
62
    print('Sub Dimension is ', sub_dim)
    for param in params:
mgassner's avatar
mgassner committed
63
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
minor    
mgassner committed
64
                            param=param, hamming_weight=hamming_weight)
mgassner's avatar
mgassner committed
65
66
67
        model.compute_ew_and_ev()
        basis_states = model.basis.states
        gs = model.eigenstates[:,0]
mgassner's avatar
mgassner committed
68
69
        half_dim = number_spins // 2
        rho_half = reduced_dm(half_dim, number_spins, hamming_weight, gs, basis_states)
mgassner's avatar
mgassner committed
70
        Entropies.append(compute_entropy(rho_half))
mgassner's avatar
mgassner committed
71
72
        rho_4spin = reduced_dm(4, number_spins, hamming_weight, gs, basis_states)
        Entropies4.append(compute_entropy(rho_4spin))
mgassner's avatar
mgassner committed
73
74
        MI = compute_MI(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion=None, first_trace_spin=first_trace_spin)
        MIs.append(MI)
mgassner's avatar
mgassner committed
75
        del model
mgassner's avatar
mgassner committed
76
77
78
79
80
81
82

    data = {
        'Model': model_name,
        'Number_spins': number_spins,
        'Periodic': periodic,
        'Hamming_weight': hamming_weight,
        'Sub_dim': sub_dim,
mgassner's avatar
mgassner committed
83
        'Delta or h over J': params.tolist(),
mgassner's avatar
mgassner committed
84
85
        'Entropies half chain': Entropies,
        'Entropies 4 spin': Entropies4,
mgassner's avatar
mgassner committed
86
87
88
89
90
91
92
93
94
95
        'Mutual Informations': MIs
    }

    timestr = time.strftime("%Y%m%d-%H%M%S")
    filename = 'MI_fixed_dim' + timestr
    with open('output/' + filename + '.yaml', 'w') as outfile:
        yaml.dump(data, outfile, default_flow_style=False)
    print(filename)

    plt.figure(figsize=(12,12))
mgassner's avatar
mgassner committed
96
    plt.title('MI: ' + model_name + ' ' + str(number_spins) + ' ' + str(periodic))
mgassner's avatar
mgassner committed
97
    plt.plot(params, Entropies, label='Half-chain Entropy')
mgassner's avatar
mgassner committed
98
    plt.plot(params, Entropies4, label='4 spin entropy')
mgassner's avatar
mgassner committed
99
100
101
    plt.plot(params, MIs, label='Mutual Information')
    plt.grid(True)
    plt.legend()
mgassner's avatar
mgassner committed
102
103
    plt.savefig('output/' + filename + '.png')

mgassner's avatar
mgassner committed
104
105
106
107
108
109
110
111
112
113
114
115
116
117
def MutInf(model_name, param, spin_range):

    model_name = model_name
    periodic = False
    spin_inversion = None
    sub_dim = 4
    first_trace_spin = 4
    MIs = []
    Entropies = []
    Entropies_div_ns = []
    number_spins_range = [2*i for i in range(spin_range[0]//2, spin_range[1]//2 + 1)]
    for number_spins in number_spins_range:
        print('Number Spins: ', number_spins)
        print('Sub Dimension is ', sub_dim)
mgassner's avatar
mgassner committed
118
        if param < -1.0 or model_name == 'tfim': 
mgassner's avatar
mgassner committed
119
            hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
120
        else: 
mgassner's avatar
mgassner committed
121
            hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
                            param=param, hamming_weight=hamming_weight ,spin_inversion=spin_inversion)
        model.compute_ew_and_ev()
        basis_states = model.basis.states
        gs = model.eigenstates[:,0]
        MI = compute_MI(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion=None, first_trace_spin=first_trace_spin)
        MIs.append(MI/sub_dim)
        rho_half = reduced_dm(number_spins // 2, number_spins, hamming_weight, gs, basis_states)
        Entropies.append(compute_entropy(rho_half))
        Entropies_div_ns.append(Entropies[-1]/number_spins)
        del model

    data = {
        'Model': model_name,
        'Number_spins': number_spins_range,
        'Periodic': periodic,
        'Hamming_weight': hamming_weight,
        'Sub_dim': sub_dim,
        'Delta or h over J': param,
        'Entropies': Entropies,
        'Mutual Informations': MIs
    }

    timestr = time.strftime("%Y%m%d-%H%M%S")
    filename = 'MI_fixed_param' + timestr
    with open('output/' + filename + '.yaml', 'w') as outfile:
        yaml.dump(data, outfile, default_flow_style=False)
    print(filename)

    plt.figure(figsize=(12,12))
    plt.title('MI: ' + model_name + ' ' + str(param) + ' ' + str(periodic))
    plt.plot(number_spins_range, Entropies_div_ns, label='Half-chain Entropy / Spin-Chain-Length')
    plt.plot(number_spins_range, MIs, label='Mutual Information / SubDim--Length')
    plt.grid(True)
    plt.xlabel("Number Spins")
    plt.legend()
    plt.savefig('output/' + filename + '.png')


mgassner's avatar
mgassner committed
162
163
164
165
if __name__ == "__main__":
    model_name = args.model_name
    param_range = args.param_range
    number_spins = args.number_spins
mgassner's avatar
mgassner committed
166
167
    spin_range = args.spin_range
    param = args.param
mgassner's avatar
mgassner committed
168
169
    MI_vs_Entropy(model_name, number_spins, param_range)
    #MutInf(model_name, param, spin_range)