xxz.py 4.52 KB
Newer Older
mgassner's avatar
mgassner committed
1
from create_model import generate_symmetries
mgassner's avatar
mgassner committed
2
3
4
5
6
7
import numpy as np
import yaml
import time
import matplotlib.pyplot as plt

from create_model import spin_model
mgassner's avatar
mgassner committed
8
from entropy_new import _hamming_weight, reduced_dm, compute_entropy
mgassner's avatar
mgassner committed
9

mgassner's avatar
mgassner committed
10
11
12
13
14
15
16
17
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--set_number_spins", "-d", dest='number_spins',type=int, required=False)
parser.add_argument("--set_param_range_and_steps", '-pr', dest='param_range', nargs='+', type=float, required=False)
parser.add_argument("--boundary_condition", "-b", dest='periodic' ,type=bool, required=False)
args = parser.parse_args()


mgassner's avatar
mgassner committed
18
def test_xxz(number_spins, param_range, periodic=False):
mgassner's avatar
mgassner committed
19
    model_name = 'xxz'
mgassner's avatar
mgassner committed
20
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
mgassner's avatar
mgassner committed
21
    entropies = []
mgassner's avatar
mgassner committed
22
    hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
23
24
    for param in params:
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
minor    
mgassner committed
25
                                param=param, hamming_weight=hamming_weight)
mgassner's avatar
mgassner committed
26
27
28
29
        model.compute_ew_and_ev()
        print('EIGENSTATE at h/J = ', param, 'is: ', model.eigenstates[:,0])
        basis_states = model.basis.states
        gs = model.eigenstates[:,0]
mgassner's avatar
mgassner committed
30
31
        #print('Number Spins: ', model.basis.number_spins)
        #print('States', model.basis.states)
mgassner's avatar
mgassner committed
32
        sub_dim = number_spins // 2
mgassner's avatar
minor    
mgassner committed
33
        rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states)
mgassner's avatar
mgassner committed
34
        entropy = compute_entropy(rhos)
mgassner's avatar
mgassner committed
35
36
37
        entropies.append(entropy)

    plt.figure(figsize=(12, 12))
mgassner's avatar
minor    
mgassner committed
38
    plt.plot(params, entropies, label="half chain entropy")
mgassner's avatar
mgassner committed
39
40
41
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
mgassner's avatar
mgassner committed
42
    plt.title('Model:' + model_name + str(number_spins) + str(periodic))
mgassner's avatar
mgassner committed
43
44
    plt.grid(True)

mgassner's avatar
minor    
mgassner committed
45
    plt.savefig('output/' + 'entropytest.jpg')
mgassner's avatar
mgassner committed
46

mgassner's avatar
mgassner committed
47
    
mgassner's avatar
mgassner committed
48
def test_area_law(number_spins, periodic, param_range):
mgassner's avatar
mgassner committed
49
50
    model_name = 'xxz'
    hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
51
52
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
    spin_inversion = None
mgassner's avatar
mgassner committed
53
    entropies = {}
mgassner's avatar
mgassner committed
54
    sub_dims = [i for i in range(1,number_spins)]
mgassner's avatar
mgassner committed
55
    for param in params:
mgassner's avatar
mgassner committed
56
        if param < -1.0:
mgassner's avatar
mgassner committed
57
            hamming = hamming_weight
mgassner's avatar
mgassner committed
58
59
        else: 
            hamming = hamming_weight
mgassner's avatar
mgassner committed
60
61
        bipartite_entropies = []
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
mgassner committed
62
                                param=param, hamming_weight=hamming, spin_inversion=spin_inversion)
mgassner's avatar
mgassner committed
63
64
65
66
67
68
        model.compute_ew_and_ev()
        gs = model.eigenstates[:,0]
        basis_states = model.basis.states
        for sub_dim in sub_dims:
            print('----------------------------------')
            print('Sub Dimension is ', sub_dim)
mgassner's avatar
mgassner committed
69
            rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion)
mgassner's avatar
mgassner committed
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
            bipartite_entropies.append(compute_entropy(rhos))
        entropies[str(param)] = bipartite_entropies
        del model
    
    data = {
        'Model': model_name,
        'Number_spins': number_spins,
        'Periodic': periodic,
        'Hamming_weight': hamming_weight,
        'Sub_dims': sub_dims,
        'Delta_over_J': params,
        'Entropies': entropies
    }

    timestr = time.strftime("%Y%m%d-%H%M%S")
    filename = 'test_area_law_' + timestr
    with open('output/' + filename + '.yaml', 'w') as outfile:
        yaml.dump(data, outfile, default_flow_style=False)
    print(filename)
    plt.figure(figsize=(12,12))
    i = 0
    for key in entropies:
        if i % 5 == 0:
            plt.plot(np.array(sub_dims)/number_spins, entropies[key], label='Delta_over_J:' + key)
        i += 1
    plt.legend()
    plt.xlabel('x/L')
    plt.ylabel('Bipartite Entanglement Entropy')
mgassner's avatar
mgassner committed
98
    plt.title('Model:' + model_name + str(number_spins)+ str(periodic))
mgassner's avatar
mgassner committed
99
100
101
102
103
    plt.grid(True)

    plt.savefig('output/' + filename + '.jpg')


mgassner's avatar
mgassner committed
104
    plt.figure(figsize=(12, 12))
mgassner's avatar
mgassner committed
105
106
    half_chain_ee = []
    for key in entropies:
mgassner's avatar
mgassner committed
107
        half_chain_ee.append(entropies[key][number_spins // 2 - 1])
mgassner's avatar
mgassner committed
108
109
110
111
112
113
114
115
    plt.plot(params, half_chain_ee, label='Delta_over_J:' + key)
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
    plt.title('Model:' + model_name + ' Number spins:' + str(number_spins))#, ' Periodic:' + str(periodic))
    plt.grid(True)

    plt.savefig('output/' + 'entropy' + timestr + '.jpg')
mgassner's avatar
mgassner committed
116
117
118
119
120

if __name__ == "__main__":
    param_range = args.param_range
    number_spins = args.number_spins
    periodic = args.periodic
mgassner's avatar
mgassner committed
121
    #test_area_law(number_spins, periodic, param_range)
mgassner's avatar
mgassner committed
122
    test_xxz(number_spins, param_range)