xxz.py 4.65 KB
Newer Older
mgassner's avatar
mgassner committed
1
from create_model import generate_symmetries
mgassner's avatar
mgassner committed
2
3
4
5
6
7
import numpy as np
import yaml
import time
import matplotlib.pyplot as plt

from create_model import spin_model
mgassner's avatar
mgassner committed
8
from entropy_new import _hamming_weight, reduced_dm, compute_entropy
mgassner's avatar
mgassner committed
9

mgassner's avatar
mgassner committed
10
11
12
13
14
15
16
17
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--set_number_spins", "-d", dest='number_spins',type=int, required=False)
parser.add_argument("--set_param_range_and_steps", '-pr', dest='param_range', nargs='+', type=float, required=False)
parser.add_argument("--boundary_condition", "-b", dest='periodic' ,type=bool, required=False)
args = parser.parse_args()


mgassner's avatar
mgassner committed
18
def test_xxz(number_spins, param_range, periodic=False):
mgassner's avatar
mgassner committed
19
    model_name = 'xxz'
mgassner's avatar
mgassner committed
20
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
mgassner's avatar
mgassner committed
21
    entropies = []
mgassner's avatar
mgassner committed
22
    hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
23
24
    for param in params:
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
minor    
mgassner committed
25
                                param=param, hamming_weight=hamming_weight)
mgassner's avatar
mgassner committed
26
        model.compute_ew_and_ev()
mgassner's avatar
mgassner committed
27
        #print('EIGENSTATE at h/J = ', param, 'is: ', model.eigenstates[:,0])
mgassner's avatar
mgassner committed
28
29
        basis_states = model.basis.states
        gs = model.eigenstates[:,0]
mgassner's avatar
mgassner committed
30
31
        #print('Number Spins: ', model.basis.number_spins)
        #print('States', model.basis.states)
mgassner's avatar
mgassner committed
32
        sub_dim = number_spins // 2
mgassner's avatar
mgassner committed
33
34
        first_trace_spin = number_spins // 4
        rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states, first_trace_spin=first_trace_spin)
mgassner's avatar
mgassner committed
35
        entropy = compute_entropy(rhos)
mgassner's avatar
mgassner committed
36
37
38
        entropies.append(entropy)

    plt.figure(figsize=(12, 12))
mgassner's avatar
minor    
mgassner committed
39
    plt.plot(params, entropies, label="half chain entropy")
mgassner's avatar
mgassner committed
40
41
42
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
mgassner's avatar
mgassner committed
43
    plt.title('Model:' + model_name + str(number_spins) + str(periodic))
mgassner's avatar
mgassner committed
44
    plt.grid(True)
mgassner's avatar
mgassner committed
45
46
    timestr = time.strftime("%Y%m%d-%H%M%S")
    plt.savefig('output/' + timestr + 'entropytest.jpg')
mgassner's avatar
mgassner committed
47

mgassner's avatar
mgassner committed
48
    
mgassner's avatar
mgassner committed
49
def test_area_law(number_spins, periodic, param_range):
mgassner's avatar
mgassner committed
50
51
    model_name = 'xxz'
    hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
52
53
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
    spin_inversion = None
mgassner's avatar
mgassner committed
54
    entropies = {}
mgassner's avatar
mgassner committed
55
    sub_dims = [i for i in range(1,number_spins)]
mgassner's avatar
mgassner committed
56
    for param in params:
mgassner's avatar
mgassner committed
57
        if param < -1.0:
mgassner's avatar
mgassner committed
58
            hamming = hamming_weight
mgassner's avatar
mgassner committed
59
60
        else: 
            hamming = hamming_weight
mgassner's avatar
mgassner committed
61
62
        bipartite_entropies = []
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
mgassner committed
63
                                param=param, hamming_weight=hamming, spin_inversion=spin_inversion)
mgassner's avatar
mgassner committed
64
65
66
67
68
69
        model.compute_ew_and_ev()
        gs = model.eigenstates[:,0]
        basis_states = model.basis.states
        for sub_dim in sub_dims:
            print('----------------------------------')
            print('Sub Dimension is ', sub_dim)
mgassner's avatar
mgassner committed
70
            rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion)
mgassner's avatar
mgassner committed
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
            bipartite_entropies.append(compute_entropy(rhos))
        entropies[str(param)] = bipartite_entropies
        del model
    
    data = {
        'Model': model_name,
        'Number_spins': number_spins,
        'Periodic': periodic,
        'Hamming_weight': hamming_weight,
        'Sub_dims': sub_dims,
        'Delta_over_J': params,
        'Entropies': entropies
    }

    timestr = time.strftime("%Y%m%d-%H%M%S")
    filename = 'test_area_law_' + timestr
    with open('output/' + filename + '.yaml', 'w') as outfile:
        yaml.dump(data, outfile, default_flow_style=False)
    print(filename)
    plt.figure(figsize=(12,12))
    i = 0
    for key in entropies:
        if i % 5 == 0:
            plt.plot(np.array(sub_dims)/number_spins, entropies[key], label='Delta_over_J:' + key)
        i += 1
    plt.legend()
    plt.xlabel('x/L')
    plt.ylabel('Bipartite Entanglement Entropy')
mgassner's avatar
mgassner committed
99
    plt.title('Model:' + model_name + str(number_spins)+ str(periodic))
mgassner's avatar
mgassner committed
100
101
102
103
104
    plt.grid(True)

    plt.savefig('output/' + filename + '.jpg')


mgassner's avatar
mgassner committed
105
    plt.figure(figsize=(12, 12))
mgassner's avatar
mgassner committed
106
107
    half_chain_ee = []
    for key in entropies:
mgassner's avatar
mgassner committed
108
        half_chain_ee.append(entropies[key][number_spins // 2 - 1])
mgassner's avatar
mgassner committed
109
110
111
112
113
114
115
116
    plt.plot(params, half_chain_ee, label='Delta_over_J:' + key)
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
    plt.title('Model:' + model_name + ' Number spins:' + str(number_spins))#, ' Periodic:' + str(periodic))
    plt.grid(True)

    plt.savefig('output/' + 'entropy' + timestr + '.jpg')
mgassner's avatar
mgassner committed
117
118
119
120
121

if __name__ == "__main__":
    param_range = args.param_range
    number_spins = args.number_spins
    periodic = args.periodic
mgassner's avatar
mgassner committed
122
    #test_area_law(number_spins, periodic, param_range)
mgassner's avatar
mgassner committed
123
    test_xxz(number_spins, param_range)