xxz.py 4.6 KB
Newer Older
mgassner's avatar
mgassner committed
1
from create_model import generate_symmetries
mgassner's avatar
mgassner committed
2
3
4
5
6
7
8
9
import numpy as np
import yaml
import time
import matplotlib.pyplot as plt

from create_model import spin_model
from entropy_new import reduced_dm, compute_entropy

mgassner's avatar
mgassner committed
10
11
12
13
14
15
16
17
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--set_number_spins", "-d", dest='number_spins',type=int, required=False)
parser.add_argument("--set_param_range_and_steps", '-pr', dest='param_range', nargs='+', type=float, required=False)
parser.add_argument("--boundary_condition", "-b", dest='periodic' ,type=bool, required=False)
args = parser.parse_args()


mgassner's avatar
mgassner committed
18
def test_xxz(number_spins, periodic, param_range):
mgassner's avatar
mgassner committed
19
    model_name = 'xxz'
mgassner's avatar
mgassner committed
20
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
mgassner's avatar
mgassner committed
21
22
23
    entropies = []
    for param in params:
        if param < -1.0:
mgassner's avatar
mgassner committed
24
            hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
25
26
27
        else: 
            hamming_weight = number_spins // 2
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
minor    
mgassner committed
28
                                param=param, hamming_weight=hamming_weight)
mgassner's avatar
mgassner committed
29
30
31
32
        model.compute_ew_and_ev()
        print('EIGENSTATE at h/J = ', param, 'is: ', model.eigenstates[:,0])
        basis_states = model.basis.states
        gs = model.eigenstates[:,0]
mgassner's avatar
mgassner committed
33
34
        #print('Number Spins: ', model.basis.number_spins)
        #print('States', model.basis.states)
mgassner's avatar
mgassner committed
35
        sub_dim = number_spins // 2
mgassner's avatar
minor    
mgassner committed
36
        rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states)
mgassner's avatar
mgassner committed
37
        entropy = compute_entropy(rhos)
mgassner's avatar
mgassner committed
38
39
40
        entropies.append(entropy)

    plt.figure(figsize=(12, 12))
mgassner's avatar
minor    
mgassner committed
41
    plt.plot(params, entropies, label="half chain entropy")
mgassner's avatar
mgassner committed
42
43
44
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
mgassner's avatar
mgassner committed
45
    plt.title('Model:' + model_name + str(number_spins) + str(periodic))
mgassner's avatar
mgassner committed
46
47
    plt.grid(True)

mgassner's avatar
minor    
mgassner committed
48
    plt.savefig('output/' + 'entropytest.jpg')
mgassner's avatar
mgassner committed
49

mgassner's avatar
mgassner committed
50
    
mgassner's avatar
mgassner committed
51
def test_area_law(number_spins, periodic, param_range):
mgassner's avatar
mgassner committed
52
53
    model_name = 'xxz'
    hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
54
55
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
    spin_inversion = None
mgassner's avatar
mgassner committed
56
    entropies = {}
mgassner's avatar
mgassner committed
57
    sub_dims = [i for i in range(1,number_spins)]
mgassner's avatar
mgassner committed
58
    for param in params:
mgassner's avatar
mgassner committed
59
        if param < -1.0:
mgassner's avatar
mgassner committed
60
            hamming = hamming_weight
mgassner's avatar
mgassner committed
61
62
        else: 
            hamming = hamming_weight
mgassner's avatar
mgassner committed
63
64
        bipartite_entropies = []
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
mgassner committed
65
                                param=param, hamming_weight=hamming, spin_inversion=spin_inversion)
mgassner's avatar
mgassner committed
66
67
68
69
70
71
        model.compute_ew_and_ev()
        gs = model.eigenstates[:,0]
        basis_states = model.basis.states
        for sub_dim in sub_dims:
            print('----------------------------------')
            print('Sub Dimension is ', sub_dim)
mgassner's avatar
mgassner committed
72
            rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion)
mgassner's avatar
mgassner committed
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
            bipartite_entropies.append(compute_entropy(rhos))
        entropies[str(param)] = bipartite_entropies
        del model
    
    data = {
        'Model': model_name,
        'Number_spins': number_spins,
        'Periodic': periodic,
        'Hamming_weight': hamming_weight,
        'Sub_dims': sub_dims,
        'Delta_over_J': params,
        'Entropies': entropies
    }

    timestr = time.strftime("%Y%m%d-%H%M%S")
    filename = 'test_area_law_' + timestr
    with open('output/' + filename + '.yaml', 'w') as outfile:
        yaml.dump(data, outfile, default_flow_style=False)
    print(filename)
    plt.figure(figsize=(12,12))
    i = 0
    for key in entropies:
        if i % 5 == 0:
            plt.plot(np.array(sub_dims)/number_spins, entropies[key], label='Delta_over_J:' + key)
        i += 1
    plt.legend()
    plt.xlabel('x/L')
    plt.ylabel('Bipartite Entanglement Entropy')
mgassner's avatar
mgassner committed
101
    plt.title('Model:' + model_name + str(number_spins)+ str(periodic))
mgassner's avatar
mgassner committed
102
103
104
105
106
    plt.grid(True)

    plt.savefig('output/' + filename + '.jpg')


mgassner's avatar
mgassner committed
107
    plt.figure(figsize=(12, 12))
mgassner's avatar
mgassner committed
108
109
    half_chain_ee = []
    for key in entropies:
mgassner's avatar
mgassner committed
110
        half_chain_ee.append(entropies[key][number_spins // 2 - 1])
mgassner's avatar
mgassner committed
111
112
113
114
115
116
117
118
    plt.plot(params, half_chain_ee, label='Delta_over_J:' + key)
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
    plt.title('Model:' + model_name + ' Number spins:' + str(number_spins))#, ' Periodic:' + str(periodic))
    plt.grid(True)

    plt.savefig('output/' + 'entropy' + timestr + '.jpg')
mgassner's avatar
mgassner committed
119
120
121
122
123

if __name__ == "__main__":
    param_range = args.param_range
    number_spins = args.number_spins
    periodic = args.periodic
mgassner's avatar
mgassner committed
124
    #test_area_law(number_spins, periodic, param_range)
mgassner's avatar
mgassner committed
125
    test_xxz(number_spins, periodic, param_range)