xxz.py 4.66 KB
Newer Older
mgassner's avatar
mgassner committed
1
from create_model import generate_symmetries
mgassner's avatar
mgassner committed
2
3
4
5
6
7
8
9
import numpy as np
import yaml
import time
import matplotlib.pyplot as plt

from create_model import spin_model
from entropy_new import reduced_dm, compute_entropy

mgassner's avatar
mgassner committed
10
11
12
13
14
15
16
17
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--set_number_spins", "-d", dest='number_spins',type=int, required=False)
parser.add_argument("--set_param_range_and_steps", '-pr', dest='param_range', nargs='+', type=float, required=False)
parser.add_argument("--boundary_condition", "-b", dest='periodic' ,type=bool, required=False)
args = parser.parse_args()


mgassner's avatar
mgassner committed
18
def test_xxz():
mgassner's avatar
mgassner committed
19
    model_name = 'xxz'
mgassner's avatar
mgassner committed
20
    number_spins = 16
mgassner's avatar
mgassner committed
21
22
    periodic = False
    spin_inversion = None
mgassner's avatar
mgassner committed
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
    params = np.linspace(-1.2, 3.0, 41)
    entropies = []
    for param in params:
        if param < -1.0:
            hamming_weight = None
        else: 
            hamming_weight = number_spins // 2
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
                                param=param, hamming_weight=hamming_weight,  use_symmetries=False ,spin_inversion=spin_inversion)
        model.compute_ew_and_ev()
        print('EIGENSTATE at h/J = ', param, 'is: ', model.eigenstates[:,0])
        basis_states = model.basis.states
        gs = model.eigenstates[:,0]
        print('Number Spins: ', model.basis.number_spins)
        print('States', model.basis.states)
        sub_dim = number_spins // 2
mgassner's avatar
mgassner committed
39
40
        rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion)
        entropy = compute_entropy(rhos)
mgassner's avatar
mgassner committed
41
42
43
44
45
46
47
48
49
50
51
52
        entropies.append(entropy)

    plt.figure(figsize=(12, 12))
    plt.plot(params, entropies)
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
    plt.title('Model:' + model_name + ' Number spins:' + str(number_spins))#, ' Periodic:' + str(periodic))
    plt.grid(True)

    plt.savefig('output/' + 'entropy' + timestr + '.jpg')

mgassner's avatar
mgassner committed
53
    
mgassner's avatar
mgassner committed
54
def test_area_law(number_spins, periodic, param_range):
mgassner's avatar
mgassner committed
55
56
    model_name = 'xxz'
    hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
57
58
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
    spin_inversion = None
mgassner's avatar
mgassner committed
59
    entropies = {}
mgassner's avatar
mgassner committed
60
    sub_dims = [i for i in range(1,number_spins)]
mgassner's avatar
mgassner committed
61
    for param in params:
mgassner's avatar
mgassner committed
62
63
64
65
        if param < -1.0:
            hamming = None
        else: 
            hamming = hamming_weight
mgassner's avatar
mgassner committed
66
67
        bipartite_entropies = []
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
mgassner committed
68
                                param=param, hamming_weight=hamming, spin_inversion=spin_inversion)
mgassner's avatar
mgassner committed
69
70
71
72
73
74
        model.compute_ew_and_ev()
        gs = model.eigenstates[:,0]
        basis_states = model.basis.states
        for sub_dim in sub_dims:
            print('----------------------------------')
            print('Sub Dimension is ', sub_dim)
mgassner's avatar
mgassner committed
75
            rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion)
mgassner's avatar
mgassner committed
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
            bipartite_entropies.append(compute_entropy(rhos))
        entropies[str(param)] = bipartite_entropies
        del model
    
    data = {
        'Model': model_name,
        'Number_spins': number_spins,
        'Periodic': periodic,
        'Hamming_weight': hamming_weight,
        'Sub_dims': sub_dims,
        'Delta_over_J': params,
        'Entropies': entropies
    }

    timestr = time.strftime("%Y%m%d-%H%M%S")
    filename = 'test_area_law_' + timestr
    with open('output/' + filename + '.yaml', 'w') as outfile:
        yaml.dump(data, outfile, default_flow_style=False)
    print(filename)
    plt.figure(figsize=(12,12))
    i = 0
    for key in entropies:
        if i % 5 == 0:
            plt.plot(np.array(sub_dims)/number_spins, entropies[key], label='Delta_over_J:' + key)
        i += 1
    plt.legend()
    plt.xlabel('x/L')
    plt.ylabel('Bipartite Entanglement Entropy')
mgassner's avatar
mgassner committed
104
    plt.title('Model:' + model_name + ' Number spins:' + str(number_spins))#, ' Periodic:' + str(periodic))
mgassner's avatar
mgassner committed
105
106
107
108
109
    plt.grid(True)

    plt.savefig('output/' + filename + '.jpg')


mgassner's avatar
mgassner committed
110
    plt.figure(figsize=(12, 12))
mgassner's avatar
mgassner committed
111
112
    half_chain_ee = []
    for key in entropies:
mgassner's avatar
mgassner committed
113
        half_chain_ee.append(entropies[key][number_spins // 2 - 1])
mgassner's avatar
mgassner committed
114
115
116
117
118
119
120
121
    plt.plot(params, half_chain_ee, label='Delta_over_J:' + key)
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
    plt.title('Model:' + model_name + ' Number spins:' + str(number_spins))#, ' Periodic:' + str(periodic))
    plt.grid(True)

    plt.savefig('output/' + 'entropy' + timestr + '.jpg')
mgassner's avatar
mgassner committed
122
123
124
125
126

if __name__ == "__main__":
    param_range = args.param_range
    number_spins = args.number_spins
    periodic = args.periodic
mgassner's avatar
mgassner committed
127
128
    #test_area_law(number_spins, periodic, param_range)
    test_xxz()