xxz.py 5.03 KB
Newer Older
mgassner's avatar
mgassner committed
1
from create_model import generate_symmetries
mgassner's avatar
mgassner committed
2
3
4
5
6
7
import numpy as np
import yaml
import time
import matplotlib.pyplot as plt

from create_model import spin_model
mgassner's avatar
mgassner committed
8
from entropy_new import _hamming_weight, reduced_dm, compute_entropy
mgassner's avatar
mgassner committed
9

mgassner's avatar
mgassner committed
10
11
12
13
14
15
16
17
import argparse
parser = argparse.ArgumentParser()
parser.add_argument("--set_number_spins", "-d", dest='number_spins',type=int, required=False)
parser.add_argument("--set_param_range_and_steps", '-pr', dest='param_range', nargs='+', type=float, required=False)
parser.add_argument("--boundary_condition", "-b", dest='periodic' ,type=bool, required=False)
args = parser.parse_args()


mgassner's avatar
mgassner committed
18
def test_xxz(number_spins, param_range, periodic=False):
mgassner's avatar
mgassner committed
19
    model_name = 'xxz'
mgassner's avatar
mgassner committed
20
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
mgassner's avatar
mgassner committed
21
    entropies = []
mgassner's avatar
mgassner committed
22
    hamming_weight = None #number_spins // 2
mgassner's avatar
mgassner committed
23
    for param in params:
mgassner's avatar
mgassner committed
24
        if param > -1.0:
mgassner's avatar
mgassner committed
25
            hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
26
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
minor    
mgassner committed
27
                                param=param, hamming_weight=hamming_weight)
mgassner's avatar
mgassner committed
28
        model.compute_ew_and_ev()
mgassner's avatar
mgassner committed
29
        print('EIGENSTATE at Delta/J = ', param, 'is: ', model.eigenstates[:,0])
mgassner's avatar
mgassner committed
30
31
        basis_states = model.basis.states
        gs = model.eigenstates[:,0]
mgassner's avatar
mgassner committed
32
        # just for testing
mgassner's avatar
mgassner committed
33
        if number_spins == 8 and param >= -1.1 and param > -1.4:
mgassner's avatar
mgassner committed
34
35
36
37
38
39
            print(gs[0])
            printi = []
            for i, x in enumerate(gs):
                if abs(x) > 1e-1:
                    printi.append([x, basis_states[i]])
            print(printi)
mgassner's avatar
mgassner committed
40
41
        #print('Number Spins: ', model.basis.number_spins)
        #print('States', model.basis.states)
mgassner's avatar
mgassner committed
42
        sub_dim = number_spins // 2
mgassner's avatar
mgassner committed
43
        first_trace_spin = None #number_spins // 4
mgassner's avatar
mgassner committed
44
        rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states, first_trace_spin=first_trace_spin)
mgassner's avatar
mgassner committed
45
        entropy = compute_entropy(rhos)
mgassner's avatar
mgassner committed
46
47
48
        entropies.append(entropy)

    plt.figure(figsize=(12, 12))
mgassner's avatar
minor    
mgassner committed
49
    plt.plot(params, entropies, label="half chain entropy")
mgassner's avatar
mgassner committed
50
51
52
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
mgassner's avatar
mgassner committed
53
    plt.title('Model:' + model_name + str(number_spins) + str(periodic))
mgassner's avatar
mgassner committed
54
    plt.grid(True)
mgassner's avatar
mgassner committed
55
56
    timestr = time.strftime("%Y%m%d-%H%M%S")
    plt.savefig('output/' + timestr + 'entropytest.jpg')
mgassner's avatar
mgassner committed
57

mgassner's avatar
mgassner committed
58
    
mgassner's avatar
mgassner committed
59
def test_area_law(number_spins, periodic, param_range):
mgassner's avatar
mgassner committed
60
61
    model_name = 'xxz'
    hamming_weight = number_spins // 2
mgassner's avatar
mgassner committed
62
63
    params = np.linspace(param_range[0], param_range[1], int(param_range[2]))
    spin_inversion = None
mgassner's avatar
mgassner committed
64
    entropies = {}
mgassner's avatar
mgassner committed
65
    sub_dims = [i for i in range(1,number_spins)]
mgassner's avatar
mgassner committed
66
    for param in params:
mgassner's avatar
mgassner committed
67
        if param < -1.0:
mgassner's avatar
mgassner committed
68
            hamming = hamming_weight
mgassner's avatar
mgassner committed
69
70
        else: 
            hamming = hamming_weight
mgassner's avatar
mgassner committed
71
72
        bipartite_entropies = []
        model = spin_model(model_name=model_name, number_spins=number_spins, periodic=periodic, 
mgassner's avatar
mgassner committed
73
                                param=param, hamming_weight=hamming, spin_inversion=spin_inversion)
mgassner's avatar
mgassner committed
74
75
76
77
78
79
        model.compute_ew_and_ev()
        gs = model.eigenstates[:,0]
        basis_states = model.basis.states
        for sub_dim in sub_dims:
            print('----------------------------------')
            print('Sub Dimension is ', sub_dim)
mgassner's avatar
mgassner committed
80
            rhos = reduced_dm(sub_dim, number_spins, hamming_weight, gs, basis_states, spin_inversion)
mgassner's avatar
mgassner committed
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
            bipartite_entropies.append(compute_entropy(rhos))
        entropies[str(param)] = bipartite_entropies
        del model
    
    data = {
        'Model': model_name,
        'Number_spins': number_spins,
        'Periodic': periodic,
        'Hamming_weight': hamming_weight,
        'Sub_dims': sub_dims,
        'Delta_over_J': params,
        'Entropies': entropies
    }

    timestr = time.strftime("%Y%m%d-%H%M%S")
    filename = 'test_area_law_' + timestr
    with open('output/' + filename + '.yaml', 'w') as outfile:
        yaml.dump(data, outfile, default_flow_style=False)
    print(filename)
    plt.figure(figsize=(12,12))
    i = 0
    for key in entropies:
        if i % 5 == 0:
            plt.plot(np.array(sub_dims)/number_spins, entropies[key], label='Delta_over_J:' + key)
        i += 1
    plt.legend()
    plt.xlabel('x/L')
    plt.ylabel('Bipartite Entanglement Entropy')
mgassner's avatar
mgassner committed
109
    plt.title('Model:' + model_name + str(number_spins)+ str(periodic))
mgassner's avatar
mgassner committed
110
111
112
113
114
    plt.grid(True)

    plt.savefig('output/' + filename + '.jpg')


mgassner's avatar
mgassner committed
115
    plt.figure(figsize=(12, 12))
mgassner's avatar
mgassner committed
116
117
    half_chain_ee = []
    for key in entropies:
mgassner's avatar
mgassner committed
118
        half_chain_ee.append(entropies[key][number_spins // 2 - 1])
mgassner's avatar
mgassner committed
119
120
121
122
123
124
125
126
    plt.plot(params, half_chain_ee, label='Delta_over_J:' + key)
    plt.legend()
    plt.xlabel('Delta / J')
    plt.ylabel('Bipartite Entanglement Entropy')
    plt.title('Model:' + model_name + ' Number spins:' + str(number_spins))#, ' Periodic:' + str(periodic))
    plt.grid(True)

    plt.savefig('output/' + 'entropy' + timestr + '.jpg')
mgassner's avatar
mgassner committed
127
128
129
130
131

if __name__ == "__main__":
    param_range = args.param_range
    number_spins = args.number_spins
    periodic = args.periodic
mgassner's avatar
mgassner committed
132
    #test_area_law(number_spins, periodic, param_range)
mgassner's avatar
mgassner committed
133
    test_xxz(number_spins, param_range)