### save pre include f_1 fit

parent d3c3848f
This diff is collapsed.

11.9 KB 205 KB | W: | H:

62.6 KB | W: | H:  • 2-up
• Swipe
• Onion skin 256 KB | W: | H:

173 KB | W: | H:  • 2-up
• Swipe
• Onion skin 266 KB | W: | H:

260 KB | W: | H:  • 2-up
• Swipe
• Onion skin

233 KB

228 KB

229 KB

82.6 KB

 ... ... @@ -255,31 +255,33 @@ def test2(n=20,i=5,j=5): def is_analytical_truly_better(): B = binary(np.arccos(.3),5.,1e3,np.arccos(-.2),4.,m1=.23,m2=.23,freq=10e-3,mP=5,P=2,theta_P=pi/2,phi_P=pi/2,T_obs=4) arr_yr = np.linspace(0,1,1000)*yr func = B.h_i(3,1e-6) arr_yr = np.linspace(0,1,10000)*yr plt.figure(dpi=300) plt.plot(arr_yr/yr,[B.strain(t) for t in arr_yr],'-',label='numerical') plt.plot(arr_yr/yr,[B.strain_analytical(t) for t in arr_yr],':',label='analytic') plt.legend() plt.title('One year strain') #plt.plot(arr_yr/yr,[func(t) for t in arr_yr],'-',label='numerical') plt.plot(arr_yr/yr,[B.dh_dtheta_S(t) for t in arr_yr],'-',label='analytic') #plt.legend() plt.title('One year strain - analytical') plt.xlabel(r'$t$ in yr') plt.ylabel(r'h(t)') #plt.savefig(fig+'\d_strain_yr\d_strain_{}.png'.format(st)) plt.ylabel(r'$\partial h/\partial \theta_S (t)$') plt.savefig(fig+'\d_strain_yr\d_strain_comparison_yr.png') plt.show() hour = np.linspace(0,5*60,1000) plt.figure(dpi=300) C = binary(np.arccos(.3),5.,1e3,np.arccos(-.2),4.,m1=.23,m2=.23,freq=10e-3,mP=0,P=100,theta_P=0,phi_P=0,T_obs=4) plt.plot(hour,[B.strain(t) for t in hour],'-') plt.plot(hour,[B.strain_analytical(t) for t in hour],'-') plt.plot(hour,[C.strain(t) for t in hour],':') plt.plot(hour,[C.strain_analytical(t) for t in hour],':') plt.legend(['$h_I$ w/ exoplanet - num','$h_I$ w/ exoplanet - ana','$h_I$ w/o exoplanet - num','$h_I$ w/o exoplanet - ana']) plt.xlabel('$t$ in s for five minutes') plt.ylabel('Strain $h$ dimensionless') plt.title(r'For $P=2$ yr and $t_0=0$ yr') plt.savefig(fig+'Strain_1.png') plt.show() for add in [.5,1,1.5]: hour = np.linspace(0,5*60,1000) + add*yr plt.figure(dpi=300) C = binary(np.arccos(.3),5.,1e3,np.arccos(-.2),4.,m1=.23,m2=.23,freq=10e-3,mP=0,P=100,theta_P=0,phi_P=0,T_obs=4) funcB = C.h_i(3,1e-6) plt.plot(hour-add*yr,[func(t) for t in hour],'-') plt.plot(hour-add*yr,[B.dh_dtheta_S(t) for t in hour],'-.') plt.plot(hour-add*yr,[funcB(t) for t in hour],'--') plt.plot(hour-add*yr,[C.dh_dtheta_S(t) for t in hour],':') plt.legend(['$h_I$ w/ exoplanet - num','$h_I$ w/ exoplanet - ana','$h_I$ w/o exoplanet - num','$h_I$ w/o exoplanet - ana']) plt.xlabel('$t$ in s for five minutes') plt.ylabel(r'$\partial h/\partial \theta_S (t)$') plt.title(r'For $P=2$ yr and $t_0=$ {} yr'.format(add)) plt.savefig(fig+'\d_strain_yr\d_strain_comparison_5_min_{}e-1yr.png'.format(10*add)) plt.show() def correlation_mat(): corr = [[ 1.04938198e-03, -4.14987183e-05, -1.04523642e-04, -2.62089676e-11, -8.63712760e-07, -5.78670634e-08, -9.75814863e-09, -2.72408696e-05, -1.28853453e-05], ... ... @@ -291,6 +293,7 @@ def correlation_mat(): [-9.75814863e-09, 8.89261296e-08, 3.47142736e-07, 1.39041402e-14, -9.11848427e-09, 9.90273954e-10, 7.54620550e-09, 3.78683215e-08, -4.65191159e-08], [-2.72408696e-05, -1.29015354e-05, -7.82904460e-05, -6.91237576e-12, -5.98017584e-07, 3.61014744e-07, 3.78683215e-08, 1.09062208e-05, -1.82041472e-06], [-1.28853453e-05, -7.29359411e-07, -6.07128660e-06, -1.92107282e-12, 7.15073872e-07, 1.86895806e-07, -4.65191159e-08, -1.82041472e-06, 4.69137210e-06]] corr = np.array(corr) labels=[r'K',r'P',r'$\phi_0$','$f_0$', 'ln(A)',r'$\theta_S$', '$\phi_S$', r'$\theta_L$', '$\phi_L$'] rel_unc = np.log10(np.abs(corr*(B.signal_to_noise()*5)**2)) plt.matshow(rel_unc) ... ... @@ -300,6 +303,17 @@ def correlation_mat(): plt.title(r'log$_{10}($Correlation matrix$\times$SNR$^2\times (M_P / M_J)^2)$') plt.savefig(fig+'Correlation_Mat.png') plt.show() labels=[r'K',r'P',r'$\phi_0$', 'ln(A)',r'$\theta_S$', '$\phi_S$', r'$\theta_L$', '$\phi_L$'] corr = np.delete(np.delete(corr,3,0),3,1) rel_unc = np.log10(np.abs(corr*(B.signal_to_noise()*5)**2)) plt.matshow(rel_unc) plt.xticks(np.arange(8),labels=labels,rotation=40) plt.yticks(np.arange(8),labels=labels) plt.colorbar() plt.title(r'log$_{10}($Correlation matrix$\times$SNR$^2\times (M_P / M_J)^2)$') plt.savefig(fig+'Correlation_Mat_2.png') plt.show() pass #test2() ... ... @@ -311,4 +325,5 @@ def correlation_mat(): #A = np.power(uncs[:-2,:]*uncs[1:-1,:]*uncs[2:,:],1/3)[::3,:] #one_year_degeneracy() #deriv_check() #correlation_mat() is_analytical_truly_better() \ No newline at end of file