To receive notifications about scheduled maintenance, please subscribe to the mailing-list gitlab-operations@sympa.ethz.ch. You can subscribe to the mailing-list at https://sympa.ethz.ch

Commit dbc92646 authored by Martyna Plomecka's avatar Martyna Plomecka
Browse files

Merged conflicts

parents 49a46895 6940e091
...@@ -27,7 +27,7 @@ from config import config ...@@ -27,7 +27,7 @@ from config import config
def cross_validate_kNN(X, y): def cross_validate_kNN(X, y):
logging.info("Cross-validation KNN...") logging.info("Cross-validation KNN...")
classifier = KNeighborsClassifier(weights='uniform', algorithm='auto', n_jobs=-1) classifier = KNeighborsClassifier(weights='uniform', algorithm='auto', n_jobs=-1)
parameters_KNN = {'n_neighbors': [5, 10, 50], 'leaf_size': [10, 30]} parameters_KNN = {'n_neighbors': [5, 25, 100], 'leaf_size': [10, 50]}
cross_validate(classifier=classifier, parameters=parameters_KNN, X=X, y=y) cross_validate(classifier=classifier, parameters=parameters_KNN, X=X, y=y)
def cross_validate_SVC(X, y): def cross_validate_SVC(X, y):
...@@ -70,7 +70,7 @@ def try_sklearn_classifiers(X, y): ...@@ -70,7 +70,7 @@ def try_sklearn_classifiers(X, y):
# LinearSVC(tol=1e-5, C=1, random_state=42, max_iter=1000), # LinearSVC(tol=1e-5, C=1, random_state=42, max_iter=1000),
# RandomForestClassifier(n_estimators=30, max_depth=20, max_features='auto', random_state=42, n_jobs=-1), # RandomForestClassifier(n_estimators=30, max_depth=20, max_features='auto', random_state=42, n_jobs=-1),
# GaussianNB(), # GaussianNB(),
LinearSVC(tol=1e-3, C=100, random_state=42, max_iter=500) LinearSVC(tol=1e-3, C=20, random_state=42, max_iter=500)
] ]
X = X.reshape((36223, 500 * 129)) X = X.reshape((36223, 500 * 129))
......
Model,Score,Runtime
Linear SVM,0.7054520358868185,1586.865302324295
LinearSVC(tol=1e-3, C=20, random_state=42, max_iter=500)
INFO:root:Started the Logging
INFO:root:X training loaded.
INFO:root:(129, 500, 36223)
INFO:root:y training loaded.
INFO:root:(1, 36223)
INFO:root:Setting the shapes
INFO:root:(36223, 500, 129)
INFO:root:(36223, 1)
INFO:root:Training the simple classifiers: kNN, Linear SVM, Random Forest and Naive Bayes.
INFO:root:Linear SVM
INFO:root:--- Score: 0.7054520358868185
INFO:root:--- Runtime: 1586.865302324295 for seconds ---
INFO:root:--- Runtime: 1779.045033454895 seconds ---
INFO:root:Finished Logging
Sender: LSF System <lsfadmin@eu-g1-010-2>
Subject: Job 166873957: <python /cluster/home/kard/dl-project/main.py> in cluster <euler> Done
Job <python /cluster/home/kard/dl-project/main.py> was submitted from host <eu-login-28> by user <kard> in cluster <euler> at Wed Mar 24 08:05:47 2021
Job was executed on host(s) <15*eu-g1-010-2>, in queue <bigmem.24h>, as user <kard> in cluster <euler> at Wed Mar 24 08:06:01 2021
</cluster/home/kard> was used as the home directory.
</cluster/home/kard/dl-project> was used as the working directory.
Started at Wed Mar 24 08:06:01 2021
Terminated at Wed Mar 24 08:36:00 2021
Results reported at Wed Mar 24 08:36:00 2021
Your job looked like:
------------------------------------------------------------
# LSBATCH: User input
python /cluster/home/kard/dl-project/main.py
------------------------------------------------------------
Successfully completed.
Resource usage summary:
CPU time : 1782.55 sec.
Max Memory : 95788 MB
Average Memory : 86952.13 MB
Total Requested Memory : 120000.00 MB
Delta Memory : 24212.00 MB
Max Swap : -
Max Processes : 3
Max Threads : 4
Run time : 1804 sec.
Turnaround time : 1813 sec.
The output (if any) follows:
2021-03-24 08:06:04.289354: I tensorflow/stream_executor/platform/default/dso_loader.cc:49] Successfully opened dynamic library libcudart.so.11.0
(36223, 500, 129)
(36223, 1)
/cluster/apps/nss/gcc-6.3.0/python/3.8.5/x86_64/lib64/python3.8/site-packages/sklearn/svm/_base.py:976: ConvergenceWarning: Liblinear failed to converge, increase the number of iterations.
warnings.warn("Liblinear failed to converge, increase "
Markdown is supported
0% or .
You are about to add 0 people to the discussion. Proceed with caution.
Finish editing this message first!
Please register or to comment