To receive notifications about scheduled maintenance, please subscribe to the mailing-list gitlab-operations@sympa.ethz.ch. You can subscribe to the mailing-list at https://sympa.ethz.ch

aggr.py 7.41 KB
Newer Older
1
import os
2 3
import logging
import csv
4
import jinja2
5 6 7
import pandas as pd
from .utils import logging as logutils

8 9 10
DEFAULT_CLUSTER_FILES_DIR="_clusters"
DEFAULT_CLUSTERS_MATCHES_CSV_FILE="clusters-matches.csv"
DEFAULT_CLUSTER_STUDENTS_CSV_FILE_PATTERN="cluster-students-{}.csv"
11
DEFAULT_CX_COURSE_STUDENTS_CSV_FILE="cx_students.csv"
12
DEFAULT_JINJA_CLUSTER_TEMPLATE_FILE="./_static/clusters.html.jinja"
13 14

def main(
15 16 17
    cluster_files_dir=DEFAULT_CLUSTER_FILES_DIR,
    clusters_matches_csv_file=DEFAULT_CLUSTERS_MATCHES_CSV_FILE,
    cluster_students_csv_file_pattern=DEFAULT_CLUSTER_STUDENTS_CSV_FILE_PATTERN,
18 19
    cx_course_students_csv_file=DEFAULT_CX_COURSE_STUDENTS_CSV_FILE,
    jinja_cluster_template_file=DEFAULT_JINJA_CLUSTER_TEMPLATE_FILE):
20

scmalte's avatar
scmalte committed
21 22
  logutils.configure_level_and_format()

23 24
  if not os.path.isfile(clusters_matches_csv_file):
    raise RuntimeError("CSV file {} with matches per clusters doesn't exist. Should have been created by mu-cluster.".format(clusters_matches_csv_file))
25 26 27 28

  if not os.path.isfile(cx_course_students_csv_file):
    raise RuntimeError("Code Expert course data CSV file {} doesn't exist. Download it from Code Expert as follows: My Courses -> Students -> Export to CSV.".format(cx_course_students_csv_file))

29
  clusters_csv: pd.DataFrame = pd.read_csv(clusters_matches_csv_file)
30
  
scmalte's avatar
scmalte committed
31
  # Read CX course data, reduce to relevant columns, truncate TotalScore (which are floats), set index column
32
  relevant_course_columns = ["Legi", "Lastname", "Firstname", "Email", "Gender", "TotalScore"]
33
  course_csv: pd.DataFrame = pd.read_csv(cx_course_students_csv_file)
34
  course_csv = course_csv[relevant_course_columns]
scmalte's avatar
scmalte committed
35
  course_csv["TotalScore"] = course_csv["TotalScore"].round(0)
36
  course_csv.set_index("Legi", inplace=True)
37
  ## TODO: Remove staff from course_csv
38

39 40 41 42 43
  ## TODO: Make eDoz files configurable
  ## TODO: Make eDoz files optional
  ## TODO: Could integrate eDoz data "Leistungskontrollen" to get information whether
  ##       or not a student is a repeater  

44
  # Analogous for eDoz course data
45
  relevant_edoz_columns = ["Nummer", "Departement"]
46
  edoz1_csv: pd.DataFrame = pd.read_csv("edoz-252083200L.csv", sep="\t")
47
  edoz1_csv = edoz1_csv[relevant_edoz_columns]
48 49 50 51 52 53
  edoz1_csv.rename(columns={"Nummer": "Legi"}, inplace=True)
  edoz1_csv.set_index("Legi", inplace=True)
  # print(edoz1_csv)
  # print("edoz1_csv.index.is_unique = {}".format(edoz1_csv.index.is_unique))
  
  edoz2_csv: pd.DataFrame = pd.read_csv("edoz-252084800L.csv", sep="\t")
54
  edoz2_csv = edoz2_csv[relevant_edoz_columns]
55 56 57 58
  edoz2_csv.rename(columns={"Nummer": "Legi"}, inplace=True)
  edoz2_csv.set_index("Legi", inplace=True)
  # print(edoz2_csv.index)
  # print("edoz2_csv.index.is_unique = {}".format(edoz2_csv.index.is_unique))
59

60 61 62
  # Vertically concat eDoz data. Since students may be enrolled into multiple
  # courses, duplicated rows are afterwards dropped.
  edoz_csv: pd.DataFrame = pd.concat([edoz1_csv, edoz2_csv])
63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79
  # print("========== edoz_csv [initial]")
  # print(edoz_csv.shape)
  # print(edoz_csv)
  # edoz_csv.drop_duplicates(inplace=True) # Not applicable here since indices are ignored
  edoz_csv = edoz_csv.loc[~edoz_csv.index.duplicated(keep='first')] # Get rows not in the set of duplicated indices
  # print("========== edoz_csv [unique]")
  # print(edoz_csv.shape)
  # print(edoz_csv)


  ## TODO: Add "Departement" column to course_csv, by joining with edoz_csv


  ### Aggregate course overview statistics
  edoz_departements: pd.DataFrame = edoz_csv["Departement"].value_counts()
  course_genders: pd.DataFrame = course_csv["Gender"].value_counts()

80 81 82 83
  assert edoz_csv.index.is_unique, "Expected unique indices (= legis) in edoz_csv"
  # # Show rows with non-unique indices (https://stackoverflow.com/questions/20199129) 
  # print(edoz_csv[edoz_csv.index.duplicated(keep=False)])
  
84 85 86

  jinja2_file_loader = jinja2.FileSystemLoader(".")
  jinja2_env = jinja2.Environment(loader=jinja2_file_loader)
87 88 89 90 91

  try:
    template = jinja2_env.get_template(jinja_cluster_template_file)
  except jinja2.exceptions.TemplateNotFound as exception:
    raise RuntimeError("Couldn't load Jinja2 template {}. Should have been created by mu-init.".format(jinja_cluster_template_file))   
92 93 94 95 96 97

  # output = template.render(colors=colors)
  # print(output)

  jinja2_rows = []

98
  cluster_groups: pd.DataFrameGroupBy = clusters_csv.groupby("cluster_id")
99
  for cluster_id, cluster in cluster_groups: # cluster: pd.DataFrame
100
    # print("-"*60)
101 102
    # Get all ids (= legis) participating in a cluster
    ids_values: numpy.ndarray = pd.concat([cluster["id1"], cluster["id2"]]).unique()
103
    
104
    # ids = pd.Series(ids_values, name="Legi", index=ids_values)
105 106
    # # Performs an inner join on the keys; here: legis
    # # https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html#compare-with-sql-join
107
    # join = pd.merge(ids, course_csv, left_index=True, right_index=True)
108

109
    cluster_course_rows: pd.DataFrame = course_csv.loc[ids_values]
110

111 112 113 114 115 116 117 118 119 120 121 122 123
    # print("========== cluster ")
    # print(cluster.shape)
    # print(cluster)
    # print("========== ids_values ")
    # print(ids_values.shape)
    # print(ids_values)
    # print("========== course_csv")
    # print(course_csv)
    # print("========== cluster_course_rows")
    # print(cluster_course_rows.shape)
    # print(cluster_course_rows)
    # print("========== edoz_csv")
    # print(edoz_csv.shape)
124 125
    # print(edoz_csv)

126 127
    cluster_rows: pd.DataFrame = cluster_course_rows.join(edoz_csv)

128 129 130 131 132 133 134
    students_per_clusters_file = os.path.join(
        cluster_files_dir, 
        cluster_students_csv_file_pattern.format(cluster_id))
    
    logging.info("Writing students per clusters to file {}".format(students_per_clusters_file))
    cluster_rows.to_csv(students_per_clusters_file)

135 136 137
    # print("========== cluster_rows")
    # print(cluster_rows.shape)
    # print(cluster_rows)
138
    # print(name)
139 140 141 142 143 144

    # print(cluster)
    # print(cluster["svg_file"].iat[0])

    jinja2_rows.append((cluster, cluster_rows))

scmalte's avatar
scmalte committed
145 146 147 148 149 150 151
  
  ## TODO: Support sorting clusters by max (or average) involved percentage


  plagiarist_count = 0
  for (_, cluster_rows) in jinja2_rows:
    plagiarist_count += cluster_rows.shape[0]
152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192


  department_counts = {}
  for (cluster, cluster_rows) in jinja2_rows:
    for index, value in cluster_rows["Departement"].value_counts().iteritems():
      if index in department_counts:
        department_counts[index] += value
      else:
        department_counts[index] = value

  # print(department_counts)

  department_percentage = {}
  for dep in department_counts:
    department_percentage[dep] = department_counts[dep] / edoz_departements[dep] * 100
  
  # print(department_percentage)


  gender_counts = {}
  for (cluster, cluster_rows) in jinja2_rows:
    for index, value in cluster_rows["Gender"].value_counts().iteritems():
      if index in gender_counts:
        gender_counts[index] += value
      else:
        gender_counts[index] = value

  # print(gender_counts)

  gender_percentage = {}
  for dep in gender_counts:
    gender_percentage[dep] = gender_counts[dep] / course_genders[dep] * 100
  
  # print(gender_percentage)

  percentages = {**department_percentage, **gender_percentage}
  for key, value in percentages.items():
    percentages[key] = round(value, 1)

  # print(percentages)

193

194 195 196 197 198
  template.stream(
    title="Clusters",
    clusters=jinja2_rows,
    edoz_count=edoz_csv.shape[0],
    course_count=course_csv.shape[0],
scmalte's avatar
scmalte committed
199
    plagiarist_count=plagiarist_count,
200 201
    percentages=percentages
  ).dump("clusters.html")
202

203 204 205

if __name__ == "__main__":
  main()