aggr.py 5.64 KB
Newer Older
1 2
import logging
import csv
3
import jinja2
4 5 6 7 8 9 10 11 12 13
import pandas as pd
from .utils import logging as logutils

DEFAULT_CLUSTERS_SUMMARY_CSV_FILE="clusters.csv"
DEFAULT_CX_COURSE_STUDENTS_CSV_FILE="cx_students.csv"

def main(
    clusters_summary_csv_file=DEFAULT_CLUSTERS_SUMMARY_CSV_FILE,
    cx_course_students_csv_file=DEFAULT_CX_COURSE_STUDENTS_CSV_FILE):

14 15 16
  clusters_csv: pd.DataFrame = pd.read_csv(clusters_summary_csv_file)
  
  # Read CX course data, reduce to relevant columns, set index column
17
  relevant_course_columns = ["Legi", "Lastname", "Firstname", "Email", "Gender", "TotalScore"]
18
  course_csv: pd.DataFrame = pd.read_csv(cx_course_students_csv_file)
19
  course_csv = course_csv[relevant_course_columns]
20
  course_csv.set_index("Legi", inplace=True)
21
  ## TODO: Remove staff from course_csv
22

23
  # Analogous for eDoz course data
24
  relevant_edoz_columns = ["Nummer", "Departement"]
25
  edoz1_csv: pd.DataFrame = pd.read_csv("edoz-252083200L.csv", sep="\t")
26
  edoz1_csv = edoz1_csv[relevant_edoz_columns]
27 28 29 30 31 32
  edoz1_csv.rename(columns={"Nummer": "Legi"}, inplace=True)
  edoz1_csv.set_index("Legi", inplace=True)
  # print(edoz1_csv)
  # print("edoz1_csv.index.is_unique = {}".format(edoz1_csv.index.is_unique))
  
  edoz2_csv: pd.DataFrame = pd.read_csv("edoz-252084800L.csv", sep="\t")
33
  edoz2_csv = edoz2_csv[relevant_edoz_columns]
34 35 36 37
  edoz2_csv.rename(columns={"Nummer": "Legi"}, inplace=True)
  edoz2_csv.set_index("Legi", inplace=True)
  # print(edoz2_csv.index)
  # print("edoz2_csv.index.is_unique = {}".format(edoz2_csv.index.is_unique))
38

39 40 41 42 43

  ## TODO: Could integrate eDoz data "Leistungskontrollen" to get information whether
  ##       or not a student is a repeater


44 45 46
  # Vertically concat eDoz data. Since students may be enrolled into multiple
  # courses, duplicated rows are afterwards dropped.
  edoz_csv: pd.DataFrame = pd.concat([edoz1_csv, edoz2_csv])
47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63
  # print("========== edoz_csv [initial]")
  # print(edoz_csv.shape)
  # print(edoz_csv)
  # edoz_csv.drop_duplicates(inplace=True) # Not applicable here since indices are ignored
  edoz_csv = edoz_csv.loc[~edoz_csv.index.duplicated(keep='first')] # Get rows not in the set of duplicated indices
  # print("========== edoz_csv [unique]")
  # print(edoz_csv.shape)
  # print(edoz_csv)


  ## TODO: Add "Departement" column to course_csv, by joining with edoz_csv


  ### Aggregate course overview statistics
  edoz_departements: pd.DataFrame = edoz_csv["Departement"].value_counts()
  course_genders: pd.DataFrame = course_csv["Gender"].value_counts()

64 65 66 67
  assert edoz_csv.index.is_unique, "Expected unique indices (= legis) in edoz_csv"
  # # Show rows with non-unique indices (https://stackoverflow.com/questions/20199129) 
  # print(edoz_csv[edoz_csv.index.duplicated(keep=False)])
  
68 69 70 71 72 73 74 75 76 77

  jinja2_file_loader = jinja2.FileSystemLoader(".")
  jinja2_env = jinja2.Environment(loader=jinja2_file_loader)
  template = jinja2_env.get_template("clusters.html.jinja")

  # output = template.render(colors=colors)
  # print(output)

  jinja2_rows = []

78 79
  cluster_groups: pd.DataFrameGroupBy = clusters_csv.groupby("cluster_id")
  for _, cluster in cluster_groups: # cluster: pd.DataFrame
80
    # print("-"*60)
81 82
    # Get all ids (= legis) participating in a cluster
    ids_values: numpy.ndarray = pd.concat([cluster["id1"], cluster["id2"]]).unique()
83
    
84
    # ids = pd.Series(ids_values, name="Legi", index=ids_values)
85 86
    # # Performs an inner join on the keys; here: legis
    # # https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html#compare-with-sql-join
87
    # join = pd.merge(ids, course_csv, left_index=True, right_index=True)
88

89
    cluster_course_rows: pd.DataFrame = course_csv.loc[ids_values]
90

91 92 93 94 95 96 97 98 99 100 101 102 103
    # print("========== cluster ")
    # print(cluster.shape)
    # print(cluster)
    # print("========== ids_values ")
    # print(ids_values.shape)
    # print(ids_values)
    # print("========== course_csv")
    # print(course_csv)
    # print("========== cluster_course_rows")
    # print(cluster_course_rows.shape)
    # print(cluster_course_rows)
    # print("========== edoz_csv")
    # print(edoz_csv.shape)
104 105
    # print(edoz_csv)

106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158
    cluster_rows: pd.DataFrame = cluster_course_rows.join(edoz_csv)

    # print("========== cluster_rows")
    # print(cluster_rows.shape)
    # print(cluster_rows)

    # print(cluster)
    # print(cluster["svg_file"].iat[0])

    jinja2_rows.append((cluster, cluster_rows))

    # break


  department_counts = {}
  for (cluster, cluster_rows) in jinja2_rows:
    for index, value in cluster_rows["Departement"].value_counts().iteritems():
      if index in department_counts:
        department_counts[index] += value
      else:
        department_counts[index] = value

  # print(department_counts)

  department_percentage = {}
  for dep in department_counts:
    department_percentage[dep] = department_counts[dep] / edoz_departements[dep] * 100
  
  # print(department_percentage)


  gender_counts = {}
  for (cluster, cluster_rows) in jinja2_rows:
    for index, value in cluster_rows["Gender"].value_counts().iteritems():
      if index in gender_counts:
        gender_counts[index] += value
      else:
        gender_counts[index] = value

  # print(gender_counts)

  gender_percentage = {}
  for dep in gender_counts:
    gender_percentage[dep] = gender_counts[dep] / course_genders[dep] * 100
  
  # print(gender_percentage)

  percentages = {**department_percentage, **gender_percentage}
  for key, value in percentages.items():
    percentages[key] = round(value, 1)

  # print(percentages)

159

160 161 162 163 164 165 166
  template.stream(
    title="Clusters",
    clusters=jinja2_rows,
    edoz_count=edoz_csv.shape[0],
    course_count=course_csv.shape[0],
    percentages=percentages
  ).dump("clusters.html")
167

168 169 170

if __name__ == "__main__":
  main()