aggr.py 6.53 KB
Newer Older
1
import os
2 3
import logging
import csv
4
import jinja2
5 6 7 8 9 10 11 12 13 14
import pandas as pd
from .utils import logging as logutils

DEFAULT_CLUSTERS_SUMMARY_CSV_FILE="clusters.csv"
DEFAULT_CX_COURSE_STUDENTS_CSV_FILE="cx_students.csv"

def main(
    clusters_summary_csv_file=DEFAULT_CLUSTERS_SUMMARY_CSV_FILE,
    cx_course_students_csv_file=DEFAULT_CX_COURSE_STUDENTS_CSV_FILE):

scmalte's avatar
scmalte committed
15 16
  logutils.configure_level_and_format()

17 18 19 20 21 22
  if not os.path.isfile(clusters_summary_csv_file):
    raise RuntimeError("Cluster summary CSV file {} doesn't exist. Should have been created by mu-cluster.".format(clusters_summary_csv_file))

  if not os.path.isfile(cx_course_students_csv_file):
    raise RuntimeError("Code Expert course data CSV file {} doesn't exist. Download it from Code Expert as follows: My Courses -> Students -> Export to CSV.".format(cx_course_students_csv_file))

23 24
  clusters_csv: pd.DataFrame = pd.read_csv(clusters_summary_csv_file)
  
scmalte's avatar
scmalte committed
25
  # Read CX course data, reduce to relevant columns, truncate TotalScore (which are floats), set index column
26
  relevant_course_columns = ["Legi", "Lastname", "Firstname", "Email", "Gender", "TotalScore"]
27
  course_csv: pd.DataFrame = pd.read_csv(cx_course_students_csv_file)
28
  course_csv = course_csv[relevant_course_columns]
scmalte's avatar
scmalte committed
29
  course_csv["TotalScore"] = course_csv["TotalScore"].round(0)
30
  course_csv.set_index("Legi", inplace=True)
31
  ## TODO: Remove staff from course_csv
32

33 34 35 36 37
  ## TODO: Make eDoz files configurable
  ## TODO: Make eDoz files optional
  ## TODO: Could integrate eDoz data "Leistungskontrollen" to get information whether
  ##       or not a student is a repeater  

38
  # Analogous for eDoz course data
39
  relevant_edoz_columns = ["Nummer", "Departement"]
40
  edoz1_csv: pd.DataFrame = pd.read_csv("edoz-252083200L.csv", sep="\t")
41
  edoz1_csv = edoz1_csv[relevant_edoz_columns]
42 43 44 45 46 47
  edoz1_csv.rename(columns={"Nummer": "Legi"}, inplace=True)
  edoz1_csv.set_index("Legi", inplace=True)
  # print(edoz1_csv)
  # print("edoz1_csv.index.is_unique = {}".format(edoz1_csv.index.is_unique))
  
  edoz2_csv: pd.DataFrame = pd.read_csv("edoz-252084800L.csv", sep="\t")
48
  edoz2_csv = edoz2_csv[relevant_edoz_columns]
49 50 51 52
  edoz2_csv.rename(columns={"Nummer": "Legi"}, inplace=True)
  edoz2_csv.set_index("Legi", inplace=True)
  # print(edoz2_csv.index)
  # print("edoz2_csv.index.is_unique = {}".format(edoz2_csv.index.is_unique))
53

54 55 56
  # Vertically concat eDoz data. Since students may be enrolled into multiple
  # courses, duplicated rows are afterwards dropped.
  edoz_csv: pd.DataFrame = pd.concat([edoz1_csv, edoz2_csv])
57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73
  # print("========== edoz_csv [initial]")
  # print(edoz_csv.shape)
  # print(edoz_csv)
  # edoz_csv.drop_duplicates(inplace=True) # Not applicable here since indices are ignored
  edoz_csv = edoz_csv.loc[~edoz_csv.index.duplicated(keep='first')] # Get rows not in the set of duplicated indices
  # print("========== edoz_csv [unique]")
  # print(edoz_csv.shape)
  # print(edoz_csv)


  ## TODO: Add "Departement" column to course_csv, by joining with edoz_csv


  ### Aggregate course overview statistics
  edoz_departements: pd.DataFrame = edoz_csv["Departement"].value_counts()
  course_genders: pd.DataFrame = course_csv["Gender"].value_counts()

74 75 76 77
  assert edoz_csv.index.is_unique, "Expected unique indices (= legis) in edoz_csv"
  # # Show rows with non-unique indices (https://stackoverflow.com/questions/20199129) 
  # print(edoz_csv[edoz_csv.index.duplicated(keep=False)])
  
78 79 80

  jinja2_file_loader = jinja2.FileSystemLoader(".")
  jinja2_env = jinja2.Environment(loader=jinja2_file_loader)
81
  template = jinja2_env.get_template("./_static/clusters.html.jinja")
82 83 84 85 86 87

  # output = template.render(colors=colors)
  # print(output)

  jinja2_rows = []

88 89
  cluster_groups: pd.DataFrameGroupBy = clusters_csv.groupby("cluster_id")
  for _, cluster in cluster_groups: # cluster: pd.DataFrame
90
    # print("-"*60)
91 92
    # Get all ids (= legis) participating in a cluster
    ids_values: numpy.ndarray = pd.concat([cluster["id1"], cluster["id2"]]).unique()
93
    
94
    # ids = pd.Series(ids_values, name="Legi", index=ids_values)
95 96
    # # Performs an inner join on the keys; here: legis
    # # https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html#compare-with-sql-join
97
    # join = pd.merge(ids, course_csv, left_index=True, right_index=True)
98

99
    cluster_course_rows: pd.DataFrame = course_csv.loc[ids_values]
100

101 102 103 104 105 106 107 108 109 110 111 112 113
    # print("========== cluster ")
    # print(cluster.shape)
    # print(cluster)
    # print("========== ids_values ")
    # print(ids_values.shape)
    # print(ids_values)
    # print("========== course_csv")
    # print(course_csv)
    # print("========== cluster_course_rows")
    # print(cluster_course_rows.shape)
    # print(cluster_course_rows)
    # print("========== edoz_csv")
    # print(edoz_csv.shape)
114 115
    # print(edoz_csv)

116 117 118 119 120 121 122 123 124 125 126
    cluster_rows: pd.DataFrame = cluster_course_rows.join(edoz_csv)

    # print("========== cluster_rows")
    # print(cluster_rows.shape)
    # print(cluster_rows)

    # print(cluster)
    # print(cluster["svg_file"].iat[0])

    jinja2_rows.append((cluster, cluster_rows))

scmalte's avatar
scmalte committed
127 128 129 130 131 132 133
  
  ## TODO: Support sorting clusters by max (or average) involved percentage


  plagiarist_count = 0
  for (_, cluster_rows) in jinja2_rows:
    plagiarist_count += cluster_rows.shape[0]
134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174


  department_counts = {}
  for (cluster, cluster_rows) in jinja2_rows:
    for index, value in cluster_rows["Departement"].value_counts().iteritems():
      if index in department_counts:
        department_counts[index] += value
      else:
        department_counts[index] = value

  # print(department_counts)

  department_percentage = {}
  for dep in department_counts:
    department_percentage[dep] = department_counts[dep] / edoz_departements[dep] * 100
  
  # print(department_percentage)


  gender_counts = {}
  for (cluster, cluster_rows) in jinja2_rows:
    for index, value in cluster_rows["Gender"].value_counts().iteritems():
      if index in gender_counts:
        gender_counts[index] += value
      else:
        gender_counts[index] = value

  # print(gender_counts)

  gender_percentage = {}
  for dep in gender_counts:
    gender_percentage[dep] = gender_counts[dep] / course_genders[dep] * 100
  
  # print(gender_percentage)

  percentages = {**department_percentage, **gender_percentage}
  for key, value in percentages.items():
    percentages[key] = round(value, 1)

  # print(percentages)

175

176 177 178 179 180
  template.stream(
    title="Clusters",
    clusters=jinja2_rows,
    edoz_count=edoz_csv.shape[0],
    course_count=course_csv.shape[0],
scmalte's avatar
scmalte committed
181
    plagiarist_count=plagiarist_count,
182 183
    percentages=percentages
  ).dump("clusters.html")
184

185 186 187

if __name__ == "__main__":
  main()