To receive notifications about scheduled maintenance, please subscribe to the mailing-list gitlab-operations@sympa.ethz.ch. You can subscribe to the mailing-list at https://sympa.ethz.ch

aggr.py 6.52 KB
Newer Older
1
import os
2
3
import logging
import csv
4
import jinja2
5
6
7
8
9
10
11
12
13
14
import pandas as pd
from .utils import logging as logutils

DEFAULT_CLUSTERS_SUMMARY_CSV_FILE="clusters.csv"
DEFAULT_CX_COURSE_STUDENTS_CSV_FILE="cx_students.csv"

def main(
    clusters_summary_csv_file=DEFAULT_CLUSTERS_SUMMARY_CSV_FILE,
    cx_course_students_csv_file=DEFAULT_CX_COURSE_STUDENTS_CSV_FILE):

scmalte's avatar
scmalte committed
15
16
  logutils.configure_level_and_format()

17
18
19
20
21
22
  if not os.path.isfile(clusters_summary_csv_file):
    raise RuntimeError("Cluster summary CSV file {} doesn't exist. Should have been created by mu-cluster.".format(clusters_summary_csv_file))

  if not os.path.isfile(cx_course_students_csv_file):
    raise RuntimeError("Code Expert course data CSV file {} doesn't exist. Download it from Code Expert as follows: My Courses -> Students -> Export to CSV.".format(cx_course_students_csv_file))

23
24
  clusters_csv: pd.DataFrame = pd.read_csv(clusters_summary_csv_file)
  
scmalte's avatar
scmalte committed
25
  # Read CX course data, reduce to relevant columns, truncate TotalScore (which are floats), set index column
26
  relevant_course_columns = ["Legi", "Lastname", "Firstname", "Email", "Gender", "TotalScore"]
27
  course_csv: pd.DataFrame = pd.read_csv(cx_course_students_csv_file)
28
  course_csv = course_csv[relevant_course_columns]
scmalte's avatar
scmalte committed
29
  course_csv["TotalScore"] = course_csv["TotalScore"].round(0)
30
  course_csv.set_index("Legi", inplace=True)
31
  ## TODO: Remove staff from course_csv
32

33
34
35
36
37
  ## TODO: Make eDoz files configurable
  ## TODO: Make eDoz files optional
  ## TODO: Could integrate eDoz data "Leistungskontrollen" to get information whether
  ##       or not a student is a repeater  

38
  # Analogous for eDoz course data
39
  relevant_edoz_columns = ["Nummer", "Departement"]
40
  edoz1_csv: pd.DataFrame = pd.read_csv("edoz-252083200L.csv", sep="\t")
41
  edoz1_csv = edoz1_csv[relevant_edoz_columns]
42
43
44
45
46
47
  edoz1_csv.rename(columns={"Nummer": "Legi"}, inplace=True)
  edoz1_csv.set_index("Legi", inplace=True)
  # print(edoz1_csv)
  # print("edoz1_csv.index.is_unique = {}".format(edoz1_csv.index.is_unique))
  
  edoz2_csv: pd.DataFrame = pd.read_csv("edoz-252084800L.csv", sep="\t")
48
  edoz2_csv = edoz2_csv[relevant_edoz_columns]
49
50
51
52
  edoz2_csv.rename(columns={"Nummer": "Legi"}, inplace=True)
  edoz2_csv.set_index("Legi", inplace=True)
  # print(edoz2_csv.index)
  # print("edoz2_csv.index.is_unique = {}".format(edoz2_csv.index.is_unique))
53

54
55
56
  # Vertically concat eDoz data. Since students may be enrolled into multiple
  # courses, duplicated rows are afterwards dropped.
  edoz_csv: pd.DataFrame = pd.concat([edoz1_csv, edoz2_csv])
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
  # print("========== edoz_csv [initial]")
  # print(edoz_csv.shape)
  # print(edoz_csv)
  # edoz_csv.drop_duplicates(inplace=True) # Not applicable here since indices are ignored
  edoz_csv = edoz_csv.loc[~edoz_csv.index.duplicated(keep='first')] # Get rows not in the set of duplicated indices
  # print("========== edoz_csv [unique]")
  # print(edoz_csv.shape)
  # print(edoz_csv)


  ## TODO: Add "Departement" column to course_csv, by joining with edoz_csv


  ### Aggregate course overview statistics
  edoz_departements: pd.DataFrame = edoz_csv["Departement"].value_counts()
  course_genders: pd.DataFrame = course_csv["Gender"].value_counts()

74
75
76
77
  assert edoz_csv.index.is_unique, "Expected unique indices (= legis) in edoz_csv"
  # # Show rows with non-unique indices (https://stackoverflow.com/questions/20199129) 
  # print(edoz_csv[edoz_csv.index.duplicated(keep=False)])
  
78
79
80
81
82
83
84
85
86
87

  jinja2_file_loader = jinja2.FileSystemLoader(".")
  jinja2_env = jinja2.Environment(loader=jinja2_file_loader)
  template = jinja2_env.get_template("clusters.html.jinja")

  # output = template.render(colors=colors)
  # print(output)

  jinja2_rows = []

88
89
  cluster_groups: pd.DataFrameGroupBy = clusters_csv.groupby("cluster_id")
  for _, cluster in cluster_groups: # cluster: pd.DataFrame
90
    # print("-"*60)
91
92
    # Get all ids (= legis) participating in a cluster
    ids_values: numpy.ndarray = pd.concat([cluster["id1"], cluster["id2"]]).unique()
93
    
94
    # ids = pd.Series(ids_values, name="Legi", index=ids_values)
95
96
    # # Performs an inner join on the keys; here: legis
    # # https://pandas.pydata.org/pandas-docs/stable/getting_started/comparison/comparison_with_sql.html#compare-with-sql-join
97
    # join = pd.merge(ids, course_csv, left_index=True, right_index=True)
98

99
    cluster_course_rows: pd.DataFrame = course_csv.loc[ids_values]
100

101
102
103
104
105
106
107
108
109
110
111
112
113
    # print("========== cluster ")
    # print(cluster.shape)
    # print(cluster)
    # print("========== ids_values ")
    # print(ids_values.shape)
    # print(ids_values)
    # print("========== course_csv")
    # print(course_csv)
    # print("========== cluster_course_rows")
    # print(cluster_course_rows.shape)
    # print(cluster_course_rows)
    # print("========== edoz_csv")
    # print(edoz_csv.shape)
114
115
    # print(edoz_csv)

116
117
118
119
120
121
122
123
124
125
126
    cluster_rows: pd.DataFrame = cluster_course_rows.join(edoz_csv)

    # print("========== cluster_rows")
    # print(cluster_rows.shape)
    # print(cluster_rows)

    # print(cluster)
    # print(cluster["svg_file"].iat[0])

    jinja2_rows.append((cluster, cluster_rows))

scmalte's avatar
scmalte committed
127
128
129
130
131
132
133
  
  ## TODO: Support sorting clusters by max (or average) involved percentage


  plagiarist_count = 0
  for (_, cluster_rows) in jinja2_rows:
    plagiarist_count += cluster_rows.shape[0]
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174


  department_counts = {}
  for (cluster, cluster_rows) in jinja2_rows:
    for index, value in cluster_rows["Departement"].value_counts().iteritems():
      if index in department_counts:
        department_counts[index] += value
      else:
        department_counts[index] = value

  # print(department_counts)

  department_percentage = {}
  for dep in department_counts:
    department_percentage[dep] = department_counts[dep] / edoz_departements[dep] * 100
  
  # print(department_percentage)


  gender_counts = {}
  for (cluster, cluster_rows) in jinja2_rows:
    for index, value in cluster_rows["Gender"].value_counts().iteritems():
      if index in gender_counts:
        gender_counts[index] += value
      else:
        gender_counts[index] = value

  # print(gender_counts)

  gender_percentage = {}
  for dep in gender_counts:
    gender_percentage[dep] = gender_counts[dep] / course_genders[dep] * 100
  
  # print(gender_percentage)

  percentages = {**department_percentage, **gender_percentage}
  for key, value in percentages.items():
    percentages[key] = round(value, 1)

  # print(percentages)

175

176
177
178
179
180
  template.stream(
    title="Clusters",
    clusters=jinja2_rows,
    edoz_count=edoz_csv.shape[0],
    course_count=course_csv.shape[0],
scmalte's avatar
scmalte committed
181
    plagiarist_count=plagiarist_count,
182
183
    percentages=percentages
  ).dump("clusters.html")
184

185
186
187

if __name__ == "__main__":
  main()