Commit aaec79ae authored by psd's avatar psd
Browse files

Exercise 8

parent b95a4bfe
%% Cell type:code id: tags:
``` python
import numpy as np
import matplotlib.pyplot as plt
from ase import Atoms
from ase.io import read,write
from ase.visualize import view
import nglview
```
%% Cell type:markdown id: tags:
## Tasks
### Task 1
Let's begin with some theory. The energy of system of atoms is:
$H = \sum_i p_i/2m_i + VR_i$.
Expanding $V$ around equilibrium ($\sum_i\partial{V}/\partial{R_i}=0$):
$H = V_0 + \frac{1}{2}\sum_{ij} \frac{\partial{V}}{\partial{R_i}\partial{R_j}}\Delta R_i\Delta R_j$
which, in matrix form reads:
$H = V_0 + \frac{1}{2}\{P_{3N}\}\begin{bmatrix}{M_i}^{-1} &&\\ && \\ &&\\ \end{bmatrix}\{P_{3N}\}^T +
\frac{1}{2}\{\Delta R_{3N}\}\begin{bmatrix}{k_{ij}} &&\\ && \\ &&\\ \end{bmatrix}\{\Delta R_{3N}\}^T$
$H = V_0 + \frac{1}{2}\{P_i(\sqrt{M_i})^{-1}\}\{P_i(\sqrt{M_i})^{-1}\}^T +
\frac{1}{2}\{\Delta R_i(\sqrt{M_i})^{-1}\}\underbrace{\begin{bmatrix}{k_{ij}(\sqrt{M_iM_j})^{-1}} &&\\ && \\ &&\\ \end{bmatrix}}_{\text{Hessian matrix}}\{\Delta R_i(\sqrt{M_i})^{-1}\}^T$
In the basis basis states of the Hessian matrix, the above equation can be written:
$H = V_0 + \frac{1}{2}\{\pi_i\}\{\pi_i\}^T +
\frac{1}{2}\{\delta\rho_i\}\begin{bmatrix}{\omega_i} &&\\ &\ddots& \\ &&\\ \end{bmatrix}\{\delta\rho_i\}^T$
where ${\delta\rho_i},{\pi_i}$ are the mass normalized position and momentum vectors. The above equation corresponds to a set of **uncoupled harmonic oscillators**:
$\boxed{H = V_0 + \frac{1}{2}\sum_{\alpha} \Big( \frac{\pi_{\alpha}^2}{2} + \frac{\omega_{\alpha}2}{2}\rho_{\alpha}^2 \Big)}$
The **molden** file contains the eigenvalues and eigenvectors of the Hessian matrix. The eigenvectros corresponds to the atomic displacements and the eigenvalues are the vibrational frequencies. Your task is to devise a method to display the vibrational modes, making use of the *vibr_displacements* and *atoms*(ase.Atoms object) returned by the function *read_molden*.
For the purpose, complete the skeleton function *get_trajectory*, which is initialized in a cell below, and make use of the ase.Atoms class, which is initialized with a list of atomic elements and their respective coordinates.
**Hint**: Write the equation of motion (Lagrangian) for the equation above and find the time evolution of the atoms for a given normal mode.
%% Cell type:markdown id: tags:
### Task 2
- Compare the vibrational frequencies of methanol with experiments (see paper) and the one of benzene with literature on the internet.
- Which kind of modes will correspond to stretching of CH and CC bonds?
- Try to animate some frequencies, and report the kind of mode corresponding to all peaks.
- In the methanol case, you can compare the result you obtained with the one with better basis set and convergence.
- Examine the differences between the file vib.c6h6.inp and the vib.c6h6.ref, and the difference in spectra. Discuss.
%% Cell type:markdown id: tags:
## Funcitons:
**read_molden(file):**
input:
file - molden filename
return:
atoms - ase.Atom object
frequency - vibrational frequencies
vibr_displacements - vibrational atomic displacements in Angstrom
**get_trajectory(mode):**
input:
mode - mode number
return:
trajectory - trajectory of atomic displacements for specified mode
%% Cell type:code id: tags:
``` python
def read_molden(file):
with open(file) as f:
data = f.readlines()
freq = []
info_atoms = [] # element, x, y, z
vibr_displacements = [] # [vibration_nr][coord]
inten = []
section = ''
b2A=0.52917721067
# Parse the datafile
for line in data:
line = line.strip()
# Are we entering into a new section?
if line[0] == '[':
section = line.strip('[]').lower()
continue
if section == 'freq':
freq.append(float(line))
if section == 'fr-coord':
el, x, y, z = line.split()
info_atoms.append([el, float(x)*b2A, float(y)*b2A, float(z)*b2A])
if section == 'fr-norm-coord':
if line.startswith('vibration'):
vibr_displacements.append([])
continue
coords = [float(x) for x in line.split()]
vibr_displacements[-1].append(coords)
if section == 'int':
inten.append(float(line))
vibr_displacements = np.asanyarray(vibr_displacements)
info_atoms = np.asanyarray(info_atoms)
atoms = Atoms(info_atoms[:,0], info_atoms[:,1:4])
return atoms, freq, vibr_displacements
```
%% Cell type:code id: tags:
``` python
def get_trajectory(mode):
'''
TODO: Solve the equation of motion and complete the missing ___
'''
trajectory = []
for time in time_arr:
vibr_atoms = Atoms(a.get_chemical_symbols(), a.positions+'''___''')
trajectory.append(vibr_atoms)
return trajectory
```
%% Cell type:markdown id: tags:
## Read molden file
%% Cell type:code id: tags:
``` python
file = "./C6H6-VIBRATIONS-1.ref.mol"
a, freq, vibr_displacements = read_molden(file)
```
%% Cell type:markdown id: tags:
## View atoms at equilibrium
%% Cell type:code id: tags:
``` python
nglview.show_ase(a)
```
%%%% Output: display_data
%% Cell type:markdown id: tags:
## Plot spectrum
%% Cell type:code id: tags:
``` python
plt.figure(figsize=(10,5))
plt.vlines(freq,np.zeros(len(freq)),np.ones(len(freq)))
plt.hlines(0,*plt.xlim())
plt.xlabel('Energy [cm$^{-1}$]',fontsize=12)
```
%%%% Output: execute_result
Text(0.5, 0, 'Energy [cm$^{-1}$]')
%%%% Output: display_data
![]()
%% Cell type:markdown id: tags:
## Visualize vibrational mode
%% Cell type:code id: tags:
``` python
mode = 3
trajectory = get_trajectory(mode)
nglv = nglview.show_asetraj(trajectory, gui=True)
nglv
```
%%%% Output: display_data
%%%% Output: display_data
%% Cell type:code id: tags:
``` python
import numpy as np
import matplotlib.pyplot as plt
from ase import Atoms
from ase.io import read,write
from ase.visualize import view
import nglview
```
%% Cell type:markdown id: tags:
## Tasks
### Task 1
Let's begin with some theory. The energy of system of atoms is:
$H = \sum_i p_i/2m_i + VR_i$.
Expanding $V$ around equilibrium ($\sum_i\partial{V}/\partial{R_i}=0$):
$H = V_0 + \frac{1}{2}\sum_{ij} \frac{\partial{V}}{\partial{R_i}\partial{R_j}}\Delta R_i\Delta R_j$
which, in matrix form reads:
$H = V_0 + \frac{1}{2}\{P_{3N}\}\begin{bmatrix}{M_i}^{-1} &&\\ && \\ &&\\ \end{bmatrix}\{P_{3N}\}^T +
\frac{1}{2}\{\Delta R_{3N}\}\begin{bmatrix}{k_{ij}} &&\\ && \\ &&\\ \end{bmatrix}\{\Delta R_{3N}\}^T$
$H = V_0 + \frac{1}{2}\{P_i(\sqrt{M_i})^{-1}\}\{P_i(\sqrt{M_i})^{-1}\}^T +
\frac{1}{2}\{\Delta R_i(\sqrt{M_i})^{-1}\}\underbrace{\begin{bmatrix}{k_{ij}(\sqrt{M_iM_j})^{-1}} &&\\ && \\ &&\\ \end{bmatrix}}_{\text{Hessian matrix}}\{\Delta R_i(\sqrt{M_i})^{-1}\}^T$
In the basis basis states of the Hessian matrix, the above equation can be written:
$H = V_0 + \frac{1}{2}\{\pi_i\}\{\pi_i\}^T +
\frac{1}{2}\{\delta\rho_i\}\begin{bmatrix}{\omega_i} &&\\ &\ddots& \\ &&\\ \end{bmatrix}\{\delta\rho_i\}^T$
where ${\delta\rho_i},{\pi_i}$ are the mass normalized position and momentum vectors. The above equation corresponds to a set of **coupled harmonic hoscillators**:
$\boxed{H = V_0 + \frac{1}{2}\sum_{\alpha} \Big( \frac{\pi_{\alpha}^2}{2} + \frac{\omega_{\alpha}2}{2}\rho_{\alpha}^2 \Big)}$
The **molden** file contains the eigenvalues and eigenvectors of the Hessian matrix. The eigenvectros corresponds to the atomic displacements and the eigenvalues are the vibrational frequencies. Your task is to devise a method to display the vibrational modes, making use of the *vibr_displacements* and *atoms*(ase.Atoms object) return by the function *read_molden*.
For the purpose, complete the skeleton function *get_trajectory*, which is initialized in a cell below, and make use of the ase.Atoms class, which is initialized with a list of atomic elements and their respective coordinates.
**Hint**: Write the equation of motion (Lagrangian) for the equation above and find the time evolution of the atoms for a given normal mode.
%% Cell type:markdown id: tags:
### Task 2
- Compare the vibrational frequencies of methanol with experiments (see paper) and the one of benzene with literature on the internet.
- Which kind of modes will correspond to stretching of CH and CC bonds?
- Try to animate some frequencies, and report the kind of mode corresponding to all peaks.
- In the methanol case, you can compare the result you obtained with the one with better basis set and convergence.
- Examine the differences between the file vib.c6h6.inp and the vib.c6h6.ref, and the difference in spectra. Discuss.
%% Cell type:markdown id: tags:
## Funcitons:
**read_molden(file):**
input:
file - molden filename
return:
atoms - ase.Atom object
frequency - vibrational frequencies
vibr_displacements - vibrational atomic displacements in Angstrom
**get_trajectory(mode):**
input:
mode - mode number
return:
trajectory - trajectory of atomic displacements for specified mode
%% Cell type:code id: tags:
``` python
def read_molden(file):
with open(file) as f:
data = f.readlines()
freq = []
info_atoms = [] # element, x, y, z
vibr_displacements = [] # [vibration_nr][coord]
inten = []
section = ''
b2A=0.52917721067
# Parse the datafile
for line in data:
line = line.strip()
# Are we entering into a new section?
if line[0] == '[':
section = line.strip('[]').lower()
continue
if section == 'freq':
freq.append(float(line))
if section == 'fr-coord':
el, x, y, z = line.split()
info_atoms.append([el, float(x)*b2A, float(y)*b2A, float(z)*b2A])
if section == 'fr-norm-coord':
if line.startswith('vibration'):
vibr_displacements.append([])
continue
coords = [float(x) for x in line.split()]
vibr_displacements[-1].append(coords)
if section == 'int':
inten.append(float(line))
vibr_displacements = np.asanyarray(vibr_displacements)
embed()
info_atoms = np.asanyarray(info_atoms)
atoms = Atoms(info_atoms[:,0], info_atoms[:,1:4])
return atoms, freq, vibr_displacements
```
%% Cell type:code id: tags:
``` python
def get_trajectory(mode):
enhance_disp = 2.0
time_arr = np.linspace(0.0, 2*np.pi, 20)
trajectory = []
for time in time_arr:
#eq_atoms = ase.Atoms(len(chem_symbols)*['O'], eq_coords)
vibr_atoms = Atoms(a.get_chemical_symbols(), a.positions+enhance_disp*np.sin(time)*vibr_displacements[mode])
trajectory.append(vibr_atoms)
return trajectory
```
%% Cell type:markdown id: tags:
## Read molden file
%% Cell type:code id: tags:
``` python
file = "./C6H6-VIBRATIONS-1.ref.mol"
a, vibr_displacements = read_molden(file)
```
%%%% Output: stream
Python 3.7.1 (default, Dec 14 2018, 19:28:38)
Type 'copyright', 'credits' or 'license' for more information
IPython 7.2.0 -- An enhanced Interactive Python. Type '?' for help.
In [1]: info_atoms
Out[1]:
[['C', 2.222544284814e-05, 1.396857970284175, 0.0],
['H', -1.2171075845410001e-05, 2.487163053250008, -0.0],
['C', -1.210924148834321, 0.6987107720067693, -0.0],
['H', -2.1548170103291895, 1.2443078223466488, 0.0],
['C', -1.2109310281380596, -0.6986636752350197, 0.0],
['H', -2.154787376405392, -1.2443226393085474, -0.0],
['C', -2.169626563747e-05, -1.396875433132127, -0.0],
['H', 1.2171075845410001e-05, -2.4871815744523817, 0.0],
['C', 1.210909861049633, -0.6987023051713985, 0.0],
['H', 2.1548021933672907, -1.244299355511278, 0.0],
['C', 1.2109463742771691, 0.6986721420703903, -0.0],
['H', 2.1548048392533437, 1.2443311061439182, 0.0]]
In [2]: exit
%% Cell type:markdown id: tags:
## View atoms at equilibrium
%% Cell type:code id: tags:
``` python
nglview.show_ase(a)
```
%%%% Output: display_data
%% Cell type:markdown id: tags:
## Plot spectrum
%% Cell type:code id: tags:
``` python
plt.figure(figsize=(10,5))
plt.vlines(freq,np.zeros(len(freq)),np.ones(len(freq)))
plt.hlines(0,*plt.xlim())
plt.xlabel('Energy [cm$^{-1}$]',fontsize=12)
```
%%%% Output: error
---------------------------------------------------------------------------
NameError Traceback (most recent call last)
<ipython-input-6-8c677f15f735> in <module>
1 plt.figure(figsize=(10,5))
----> 2 plt.vlines(freq,np.zeros(len(freq)),np.ones(len(freq)))
3 plt.hlines(0,*plt.xlim())
4 plt.xlabel('Energy [cm$^{-1}$]',fontsize=12)
NameError: name 'freq' is not defined
%%%% Output: display_data
%% Cell type:markdown id: tags:
## Visualize vibrational mode
%% Cell type:code id: tags:
``` python
mode = 3
trajectory = get_trajectory(mode)
nglv = nglview.show_asetraj(trajectory, gui=True)
nglv
```
This diff is collapsed.
[Molden Format]
[FREQ]
400.302903
401.555638
596.097032
602.918089
661.189688
706.249913
833.568431
833.756231
949.504594
949.976122
976.963838
985.823710
993.020931
1029.977506
1035.062465
1143.899937
1163.645030
1165.969536
1338.887202
1347.664359
1466.711983
1471.797438
1593.030396
1594.117474
3087.283723
3096.781439
3097.757885
3111.829664
3112.819108
3121.735327
[FR-COORD]
C 0.000042 2.639679 0.000000
H -0.000023 4.700057 -0.000000
C -2.288315 1.320372 -0.000000
H -4.072014 2.351401 0.000000
C -2.288328 -1.320283 0.000000
H -4.071958 -2.351429 -0.000000
C -0.000041 -2.639712 -0.000000
H 0.000023 -4.700092 0.000000
C 2.288288 -1.320356 0.000000
H 4.071986 -2.351385 0.000000
C 2.288357 1.320299 -0.000000
H 4.071991 2.351445 0.000000
[FR-NORM-COORD]
vibration 1
-0.000005 0.000033 0.000502
0.000008 0.000052 0.001115
-0.000006 -0.000005 0.201939
-0.000014 -0.000001 0.456716
0.000029 -0.000003 -0.202439
0.000029 0.000023 -0.457874
-0.000000 -0.000010 0.000502
-0.000007 -0.000001 0.001115
-0.000015 -0.000015 0.201939
-0.000009 0.000004 0.456736
-0.000005 -0.000005 -0.202439
0.000013 -0.000022 -0.457854
vibration 2
-0.000012 0.000028 0.233236
0.000011 0.000041 0.528255
0.000003 -0.000006 -0.117066
-0.000001 -0.000018 -0.264924
0.000024 0.000003 -0.116197
0.000027 0.000024 -0.262997
-0.000004 -0.000007 0.233236
-0.000007 0.000001 0.528231
-0.000005 -0.000015 -0.117065
-0.000000 -0.000012 -0.264935
-0.000010 -0.000006 -0.116197
0.000001 -0.000016 -0.262993
vibration 3
-0.000042 0.357385 -0.000048
0.000111 0.355791 0.000060
0.224264 0.024295 -0.000010
0.058038 -0.261826 -0.000001
0.224428 -0.024164 0.000061
0.058276 0.261838 -0.000101
0.000053 -0.357363 -0.000019
-0.000009 -0.355772 -0.000057
-0.224283 -0.024294 -0.000027
-0.058128 0.261748 0.000037
-0.224421 0.024148 0.000033
-0.058266 -0.261852 0.000170
vibration 4
-0.151123 -0.000115 -0.000032
0.231673 -0.000110 -0.000092
-0.232074 0.220707 0.000016
-0.325667 0.056506 0.000006
0.231918 0.220718 0.000016
0.325563 0.056426 -0.000152
0.151125 0.000103 0.000009
-0.231598 0.000084 -0.000037
0.232078 -0.220697 -0.000015
0.325650 -0.056526 -0.000118
-0.231927 -0.220715 0.000036
-0.325603 -0.056390 0.000042
vibration 5
0.000011 0.000006 -0.034007
0.000015 0.000015 0.406053
-0.000017 0.000015 -0.034214
-0.000033 0.000015 0.407191
-0.000007 -0.000008 -0.034184
-0.000006 -0.000030 0.407242
0.000014 0.000002 -0.034041
0.000007 0.000007 0.406001
0.000009 -0.000003 -0.034180
0.000006 0.000002 0.407241
-0.000009 -0.000011 -0.034216
-0.000007 -0.000026 0.407180
vibration 6
-0.000010 0.000006 0.201113
0.000012 0.000009 0.356838
-0.000011 0.000016 -0.201393
-0.000026 -0.000015 -0.354372
0.000018 0.000010 0.201408
0.000023 -0.000002 0.354173
0.000008 -0.000002 -0.201095
-0.000016 0.000000 -0.357067
0.000008 -0.000018 0.201412
0.000021 0.000012 0.354145
-0.000013 -0.000013 -0.201388
-0.000016 0.000001 -0.354400
vibration 7
-0.000006 0.000021 -0.000410
-0.000022 0.000024 0.002727
0.000002 0.000001 -0.074048
-0.000015 -0.000024 0.495897
0.000005 0.000003 -0.073645
0.000009 0.000001 0.493120
-0.000008 -0.000019 0.000410
-0.000006 -0.000020 -0.002735
0.000004 -0.000014 0.074048
0.000024 0.000005 -0.495875
0.000004 0.000007 0.073647
0.000007 0.000018 -0.493151
vibration 8
-0.000002 0.000013 0.085376
0.000002 0.000012 -0.569602
0.000000 -0.000006 0.042262
-0.000014 -0.000024 -0.284524
0.000029 -0.000002 -0.042966
0.000034 0.000006 0.289248
-0.000001 0.000010 -0.085378
-0.000010 0.000026 0.569633
-0.000020 -0.000008 -0.042260
-0.000023 -0.000004 0.284498
-0.000007 -0.000008 0.042966
0.000008 -0.000026 -0.289260
vibration 9